cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 50 results. Next

A305027 Array read by antidiagonals: T(n,m) is the number of nonisomorphic binary n X m matrices with 3 1's per column under row and column permutations (m >= 3).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 7, 5, 1, 1, 1, 4, 11, 17, 6, 1, 1, 1, 4, 14, 40, 35, 9, 1, 1, 1, 4, 15, 62, 122, 76, 11, 1, 1, 1, 4, 16, 78, 272, 410, 149, 15, 1, 1, 1, 4, 16, 87, 427, 1307, 1270, 291, 18, 1, 1, 1, 4, 16, 91, 544, 2754, 6178, 3888, 539, 23, 1
Offset: 0

Views

Author

Andrew Howroyd, May 24 2018

Keywords

Comments

Also, the number of pure 2-complexes on m nodes with n multiple 2-simplexes.

Examples

			Array begins:
========================================================
n\m| 3  4   5    6     7      8      9     10     11
---+----------------------------------------------------
0  | 1  1   1    1     1      1      1      1      1 ...
1  | 1  1   1    1     1      1      1      1      1 ...
2  | 1  2   3    4     4      4      4      4      4 ...
3  | 1  3   7   11    14     15     16     16     16 ...
4  | 1  5  17   40    62     78     87     91     92 ...
5  | 1  6  35  122   272    427    544    606    635 ...
6  | 1  9  76  410  1307   2754   4251   5343   5939 ...
7  | 1 11 149 1270  6178  18247  36455  54621  67609 ...
8  | 1 15 291 3888 28687 122038 327774 616020 891831 ...
...
		

Crossrefs

Columns m=4..7 are A001400, A014395, A050911, A050912.
A diagonal is A247596.
Cf. A050913 (infinite m), A304942.

Programs

  • PARI
    \\ See A304942 for Blocks
    for(n=1, 8, for(m=3, 11, print1(Blocks(n, m, 3), ", ")); print)

A032801 Number of unordered sets a, b, c, d of distinct integers from 1..n such that a+b+c+d = 0 (mod n).

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 5, 9, 14, 22, 30, 42, 55, 73, 91, 115, 140, 172, 204, 244, 285, 335, 385, 445, 506, 578, 650, 734, 819, 917, 1015, 1127, 1240, 1368, 1496, 1640, 1785, 1947, 2109, 2289, 2470, 2670, 2870, 3090, 3311, 3553, 3795, 4059, 4324, 4612, 4900, 5212, 5525
Offset: 1

Views

Author

Keywords

Comments

From Petros Hadjicostas, Jul 12 2019: (Start)
By reading carefully the proof of Lemma 5.1 (pp. 65-66) in Barnes (1959), we see that he actually proved a general result (even though he does not state it in the lemma). For 1 <= k <= n, let T(n, k) be the number of unordered sets b_1, b_2, ..., b_k of k distinct integers from 1..n such that b_1 + b_2 + ... + b_k = 0 (mod n). The proof of Lemma 5.1 in the paper implies that T(n, k) = (1/n) * Sum_{s | gcd(n, k)} (-1)^(k - (k/s)) * phi(s) * binomial(n/s, k/s).
For fixed k >= 1, the g.f. of the sequence (T(n, k): n >= 1) (with T(n, k) = 0 for 1 <= n < k) is (x^k/k) * Sum_{s|k} phi(s) * (-1)^(k - (k/s)) / (1 - x^s)^(k/s).
For k = 4, we get T(n, k=4) = (1/n) * Sum_{d | gcd(n, 4)} (-1)^(4/s) * phi(d) * binomial(n/d, 4/d), which agrees with Barnes' 3-part formula in Lemma 5.1 and with the formula in N. J. A. Sloane's Maple program below. It also agrees with Colin Barker's formula below.
For k = 4, the g.f. is (x^4/4) * Sum_{s|4} phi(s) * (-1)^(4/s) /(1 - x^s)^(4/s), which agrees with Herbert Kociemba's g.f. below.
Barnes' (1959) formula is a special case of Theorem 4 (p. 66) in Ramanathan (1944). If R(n, k, v) is the number of unordered sets b_1, b_2, ..., b_k of k distinct integers from 1..n such that b_1 + b_2 + ... + b_k = v (mod n), then he proved that R(n, k, v) = (1/n) * Sum_{s | gcd(n,k)} (-1)^(k - (k/s)) * binomial(n/s, k/s) * C_s(v), where C_s(v) = A054533(s, v) is Ramanujan's sum (even though it was discovered first around 1900 by the Austrian mathematician R. D. von Sterneck).
Because C_s(v = 0) = phi(s), we get Barnes' (implicit) result; i.e., R(n, k, v=0) = T(n, k) and a(n) = R(n, k=4, v=0) = T(n, k=4).
For k=2, we have R(n, k=2, v=0) = T(n, k=2) = A004526(n-1) for n >= 1. For k=3, we have R(n, k=3, v=0) = T(n, k=3) = A058212(n) for n >= 1. For k=5, we have R(n, k=5, v=0) = T(n, k=5) = A008646(n-5) for n >= 5.
(End)

References

  • E. V. McLaughlin, Numbers of factorizations in non-unique factorial domains, Senior Thesis, Allegeny College, Meadville, PA, April 2004.

Crossrefs

Programs

  • Maple
    f := n-> if n mod 2 <> 0 then (n-1)*(n-2)*(n-3)/24 elif n mod 4 = 0 then (n-4)*(n^2-2*n+6)/24 else (n-2)*(n^2-4*n+6)/24; fi;
  • Mathematica
    CoefficientList[Series[(x^3 / 4) (1 / (1 - x)^4 + 1 / (1 - x^2)^2 - 2 / (1 - x^4)), {x, 0, 60}],x] (* Vincenzo Librandi, Jul 13 2019 *)

Formula

G.f.: x^5*(1+x-x^2+x^3)/((-1+x)^4*(1+x)^2*(1+x^2)). - Herbert Kociemba, Oct 22 2016
a(n) = (-6 * (4 + 2*(-1)^n + (-i)^n + i^n) + (25 + 3*(-1)^n)*n - 12*n^2 + 2*n^3)/48, where i = sqrt(-1). - Colin Barker, Oct 23 2016
a(n) = -A008610(-n), per formulae of Ralf Stephan (A008610) and C. Barker (above). Also, A008610(n) - a(n+4) = (1+(-1)^signum(n mod 4))/2, i.e., (1,0,0,0,1,0,0,0,...) repeating (offset 0). - Gregory Gerard Wojnar, Jul 09 2022

Extensions

Offset changed by David A. Corneth, Oct 23 2016

A050911 Number of pure 2-complexes on 6 unlabeled nodes with n multiple 2-simplexes.

Original entry on oeis.org

1, 1, 4, 11, 40, 122, 410, 1270, 3888, 11230, 31169, 82234, 208068, 504148, 1175882, 2643952, 5751108, 12125574, 24845786, 49567350, 96475743, 183489050, 341565932, 623152106, 1115673576, 1962423333, 3394902381, 5781655379
Offset: 0

Views

Author

Vladeta Jovovic, Dec 29 1999

Keywords

Crossrefs

Column m=6 of A305027.

A050912 Number of pure 2-complexes on 7 unlabeled nodes with n multiple 2-simplexes.

Original entry on oeis.org

1, 1, 4, 14, 62, 272, 1307, 6178, 28687, 127074, 534414, 2125086, 8003063, 28603253, 97334199, 316359888, 985253099, 2948785272, 8504664978, 23695762074, 63924853698, 167320196102, 425715789486, 1054686008982
Offset: 0

Views

Author

Vladeta Jovovic, Dec 29 1999

Keywords

Crossrefs

Column m=7 of A305027.

A091492 Triangle, read by rows, generated recursively and related to partitions.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 2, 0, 0, 0, 1, 1, 2, 1, 0, 0, 0, 1, 1, 3, 1, 0, 0, 0, 0, 1, 1, 3, 2, 0, 0, 0, 0, 0, 1, 1, 4, 3, 0, 0, 0, 0, 0, 0, 1, 1, 4, 4, 1, 0, 0, 0, 0, 0, 0, 1, 1, 5, 5, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 5, 7, 2, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 6, 8, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, Jan 16 2004

Keywords

Comments

Excluding the leading zeros, the columns are related to partitions. The 3rd column lists A001399 (partitions of n into at most 3 parts). The 4th column lists A001400 (partitions of n into at most 4 parts). The 5th column lists A001401 (partitions of n into at most 5 parts). The 6th column is A091498. Row sums are A091493. The number of nonzero terms in each row is A091497.

Examples

			T(12,3) = 7 = (4)*1+(3)*1 = T(9,2)*T(2,1)+T(9,3)*T(3,0) = Sum T(9,j)*T(j,3-j) {j=2..3}.
Rows begin:
{1},
{1,1},
{1,1,0},
{1,1,1,0},
{1,1,1,0,0},
{1,1,2,0,0,0},
{1,1,2,1,0,0,0},
{1,1,3,1,0,0,0,0},
{1,1,3,2,0,0,0,0,0},
{1,1,4,3,0,0,0,0,0,0},
{1,1,4,4,1,0,0,0,0,0,0},
{1,1,5,5,1,1,0,0,0,0,0,0},
{1,1,5,7,2,1,0,0,0,0,0,0,0},
{1,1,6,8,3,2,0,0,0,0,0,0,0,0},
{1,1,6,10,5,3,0,0,0,0,0,...
{1,1,7,12,6,5,0,0,0,0,0,...
{1,1,7,14,9,7,1,0,0,0,0,...
{1,1,8,16,11,10,2,0,0,0,...
{1,1,8,19,15,13,3,2,0,0,...
{1,1,9,21,18,18,5,2,0,0,...
{1,1,9,24,23,23,8,4,0,0,...
{1,1,10,27,27,30,11,6,0,...
{1,1,10,30,34,37,17,10,0,...
		

Crossrefs

Programs

  • PARI
    T(n,k)=if(k>n || n<0 || k<0,0,if(k<=1 || (k==n && n<2),1, sum(j=(k+1)\2,min(n-k,k),T(n-k,j)*T(j,k-j)););)

Formula

T(n, k)=Sum T(n-k, j)*T(j, k-j) {j=[(k+1)/2]..min(k, n-k)}, with T(0, 0)=1, T(n, 0)=1, T(1, 1)=1.

A120001 Where record values of A119999 occur.

Original entry on oeis.org

0, 10, 12, 21, 102, 112, 123, 213, 312, 412, 512, 612, 712, 812, 912, 1012, 1023, 1123, 1213, 1234, 1324, 1423, 2113, 2134, 3124, 4123, 5123, 6123, 7123, 8123, 9123, 10123, 10234, 11213, 11234, 12134, 12345, 13245, 14235, 15234, 16234, 17234, 18234, 19234, 21134, 21345
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 13 2006

Keywords

Comments

A120000(n)=A119999(a(n)) and A119999(m) < A120000(n) for m
problem: smallest m>1023456789 such that A119999(m)>A119999(1023456789)?
From David A. Corneth, Sep 07 2022: (Start)
Does every term >= 10 contain the digit 1?
Does every term >= 12 contain the digits 1 and 2?
Does every term >= 1023 contain the digits 1, 2 and 3?
Does every term >= 11234 contain the digits 1, 2, 3 and 4?
Does every term >= 112345 contain the digits 1, 2, 3, 4 and 5? (End)

Examples

			21 is in the sequence as A119999(21) = 12 and 12 is the largest value of A119999(k) for k in [0, 21]. - _David A. Corneth_, Sep 07 2022
		

Crossrefs

Extensions

More terms from David A. Corneth, Sep 07 2022

A160438 Number of partitions of n*(n+1)/2 with at most four parts that can be obtained from grouping (with parentheses) a permutation of the sum 1+2+...+n.

Original entry on oeis.org

1, 1, 2, 5, 13, 35, 93, 215, 437, 815, 1436, 2413, 3886, 6041, 9125, 13436, 19323, 27221, 37670, 51293, 68797, 91025, 118982, 153797, 196721, 249206, 312935, 389761, 481709, 591080, 720485, 872763, 1050980, 1258565, 1499351, 1777462
Offset: 0

Author

Hagen von Eitzen, May 13 2009

Keywords

Comments

a(n) is the number of integer quadruples (x,y,z,w) with x >= y >= z >= w >= 0 and x+y+z+w = n*(n+1)/2 such that the set {1,2,...,n} can be partitioned into four (possibly empty) subsets with respective element sums x, y, z, w.

Examples

			For n = 3 the a(3) = 5 solutions are 6 = (1+2+3), 5+1 = (2+3)+(1), 4+2 = (1+3)+(2), 3+3 = (3)+(1+2), 3+2+1 = (3)+(2)+(1). Note that 3+3 = (1+2)+(3) is the same as (3)+(1+2) as both are 3+3.
For n = 6 the partition 10+4+4+3 is *not* among the a(6) = 93 solutions because 4 can only come from grouping either (4) or (1+3), hence both groupings would have to occur; but (1+3) conflicts with both possible groupings (3) and (1+2) which could produce 3.
		

Formula

If n >= 8 then a(n) = A001400(n*(n+1)/2) - 2*A011848(n+1) - 5.

A232539 Triangle read by rows: T(n,k) = number of partitions of n into at most four parts in which the largest part is equal to k, 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 0, 2, 2, 1, 1, 0, 0, 2, 3, 2, 1, 1, 0, 0, 1, 3, 3, 2, 1, 1, 0, 0, 1, 3, 4, 3, 2, 1, 1, 0, 0, 0, 3, 4, 4, 3, 2, 1, 1, 0, 0, 0, 2, 5, 5, 4, 3, 2, 1, 1, 0, 0, 0, 1, 4, 6, 5, 4, 3, 2, 1, 1, 0, 0, 0, 1, 4, 6, 7, 5, 4, 3, 2, 1, 1
Offset: 0

Author

L. Edson Jeffery, Jan 02 2014

Keywords

Comments

Also number of partitions of n into k parts with parts in the range 1..4.

Examples

			Triangle T{n,k} begins:
  1;
  0, 1;
  0, 1, 1;
  0, 1, 1, 1;
  0, 1, 2, 1, 1;
  0, 0, 2, 2, 1, 1;
  0, 0, 2, 3, 2, 1, 1;
  0, 0, 1, 3, 3, 2, 1, 1;
  0, 0, 1, 3, 4, 3, 2, 1, 1;
  0, 0, 0, 3, 4, 4, 3, 2, 1, 1;
  ...
		

Crossrefs

Cf. A001400 (row sums), A219237, A233292 (row partial sums), A145362 (parts <=2), A339884 (parts <=3).

Programs

  • Maple
    maxp := 4 :
    gf := 1/mul(1-u*t^i,i=1..maxp) :
    for n from 0 to 13 do
        for m from 0 to n do
            coeftayl(gf,t=0,n) ;
            coeftayl(%,u=0,m) ;
            printf("%d ",%);
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, May 27 2025

Formula

G.f.: 1/((1-u*t)*(1-u*t^2)*(1-u*t^3)*(1-u*t^4)). - [Comtet p. 97 [2c]]. - R. J. Mathar, May 27 2025

A274099 Number of partitions of n*(n-1)/2 into at most four parts.

Original entry on oeis.org

1, 1, 3, 9, 23, 54, 120, 249, 478, 864, 1495, 2484, 3969, 6136, 9234, 13561, 19464, 27378, 37845, 51488, 69012, 91260, 119239, 154078, 197026, 249535, 313290, 390144, 482120, 591519, 720954, 873264, 1051513, 1259130, 1499950, 1778097, 2097984, 2464489
Offset: 1

Author

N. J. A. Sloane, Jun 11 2016

Keywords

Crossrefs

A subsequence of A001400. Cf. A274100.

Programs

  • Mathematica
    Length[IntegerPartitions[#,4]]&/@Accumulate[Range[0,40]] (* Harvey P. Dale, Jul 08 2022 *)
  • PARI
    \\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
    b(n) = round(real((68+36*(-1)^n+18*((-I)^n+I^n)+(16*exp(-2/3*I*n*Pi)*(1+I*sqrt(3)+2*exp((4*I*n*Pi)/3)))/(1+(-1)^(1/3))+59*(1+n)+9*(-1)^n*(1+n)+18*(1+n)*(2+n)+2*(1+n)*(2+n)*(3+n))/288))
    vector(50, n, b(n*(n-1)/2)) \\ Colin Barker, Jun 12 2016

Formula

Coefficient of x^(n*(n-1)/2) in 1/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)).
Empirical g.f.: (1 -5*x +15*x^2 -30*x^3 +54*x^4 -77*x^5 +109*x^6 -128*x^7 +150*x^8 -148*x^9 +150*x^10 -128*x^11 +109*x^12 -77*x^13 +54*x^14 -30*x^15 +15*x^16 -5*x^17 +x^18) / ((1 -x)^7*(1 +x^2)^3*(1 +x +x^2)*(1 +x^4)). - Colin Barker, Jun 12 2016

Extensions

More terms from Colin Barker, Jun 12 2016

A288165 Expansion of x^4/((1-x^4)*(1-x^3)*(1-x^6)*(1-x^9)).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 2, 1, 1, 3, 2, 1, 5, 3, 2, 6, 5, 3, 9, 6, 5, 11, 9, 6, 15, 11, 9, 18, 15, 11, 23, 18, 15, 27, 23, 18, 34, 27, 23, 39, 34, 27, 47, 39, 34, 54, 47, 39, 64, 54, 47, 72, 64, 54, 84, 72, 64, 94, 84, 72, 108, 94, 84, 120, 108, 94, 136, 120
Offset: 0

Author

Seiichi Manyama, Jun 06 2017

Keywords

Examples

			a(57) = p_4(57/3)     = p_4(19) = A001400(15) = 54,
a(58) = p_4((58+8)/3) = p_4(22) = A001400(18) = 84,
a(59) = p_4((59+4)/3) = p_4(21) = A001400(17) = 72,
a(60) = p_4(60/3)     = p_4(20) = A001400(16) = 64,
a(61) = p_4((61+8)/3) = p_4(23) = A001400(19) = 94,
a(62) = p_4((62+4)/3) = p_4(22) = A001400(18) = 84.
		

Crossrefs

Cf. A005044 (k=3), this sequence (k=4), A288166 (k=5).

Formula

a(n) = p_4(n/3) if n == 0 mod 3,
a(n) = p_4((n+8)/3) if n == 1 mod 3,
a(n) = p_4((n+4)/3) if n == 2 mod 3,
where p_4(n) is the number of partitions of n into exactly 4 parts.
Previous Showing 31-40 of 50 results. Next