cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 46 results. Next

A337350 a(n) is the number of lattice paths from (0,0) to (2n,2n) using only the steps (1,0) and (0,1) and which do not touch any other points of the form (2k,2k).

Original entry on oeis.org

1, 6, 34, 300, 3146, 36244, 443156, 5646040, 74137050, 996217860, 13633173180, 189347631720, 2662142601924, 37815138677960, 541882155414376, 7823955368697776, 113712609033955834, 1662288563798703204, 24424940365489658540, 360537080085493670856
Offset: 0

Views

Author

Lucas A. Brown, Aug 24 2020

Keywords

Comments

The terms of this sequence may be computed via a determinant; see Lemma 10.7.2 of the Krattenthaler reference for details.

Crossrefs

Programs

  • PARI
    seq(n)={Vec(2 - 1/(O(x*x^n) + sum(k=0, n, binomial(4*k,2*k)*x^k)))} \\ Andrew Howroyd, Aug 25 2020

Formula

G.f.: 2 - 1 / (Sum_{n>=0} binomial(4*n,2*n) * x^n).
a(n) = binomial(4*n,2*n) * (8*n+1) / (8*n^2 + 2*n - 1) for n >= 1. For proof, see the Quy Nhan link.
D-finite with recurrence n*(2*n+1)*(8*n-7)*a(n) -2*(4*n-5)*(4*n-3)*(8*n+1)*a(n-1)=0. - R. J. Mathar, Jan 26 2025
From Lucas A. Brown, Jul 13 2025: (Start)
G.f.: 2 - sqrt(2-32*x) / sqrt(1+sqrt(1-16*x)).
a(n) = A000108(2*n) + 4 * A000108(2*n-1). (End)

A337396 Expansion of sqrt((1-8*x+sqrt(1+64*x^2)) / (2 * (1+64*x^2))).

Original entry on oeis.org

1, -2, -26, 76, 1222, -3772, -64676, 203992, 3607622, -11510636, -207302156, 666187432, 12142184476, -39211413464, -720760216328, 2335857124016, 43208062233158, -140406756766796, -2609918906614652, 8498967890177416, 158596941629422132, -517334728427373704, -9684521991498517112
Offset: 0

Views

Author

Seiichi Manyama, Aug 26 2020

Keywords

Crossrefs

Column k=4 of A337419.

Programs

  • Mathematica
    a[n_] := Sum[(-4)^(n - k) * Binomial[2*k, k] * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 23, 0] (* Amiram Eldar, Aug 26 2020 *)
  • PARI
    N=40; x='x+O('x^N); Vec(sqrt((1-8*x+sqrt(1+64*x^2))/(2*(1+64*x^2))))
    
  • PARI
    {a(n) = sum(k=0, n, (-4)^(n-k)*binomial(2*k, k)*binomial(2*n, 2*k))}

Formula

a(n) = Sum_{k=0..n} (-4)^(n-k) * binomial(2*k,k) * binomial(2*n,2*k).
a(0) = 1, a(1) = -2 and n * (2*n-1) * (4*n-5) * a(n) = (4*n-3) * 2 * a(n-1) - 64 * (n-1) * (2*n-3) * (4*n-1) * a(n-2) for n > 1. - Seiichi Manyama, Aug 28 2020

A370100 a(n) = Sum_{k=0..n} binomial(4*n,k) * binomial(2*n-k-1,n-k).

Original entry on oeis.org

1, 5, 47, 500, 5615, 65005, 767396, 9183144, 110995695, 1351922495, 16566597047, 204010570296, 2522556212228, 31298015910140, 389458822888280, 4858487926378000, 60742838865326319, 760901358321592611, 9547848458062427405, 119990407515367475700
Offset: 0

Views

Author

Seiichi Manyama, Feb 10 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[4*n, k]*Binomial[2*n - k - 1, n - k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 12 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(4*n, k)*binomial(2*n-k-1, n-k));

Formula

a(n) = [x^n] ( (1+x)^4/(1-x) )^n.
The g.f. exp( Sum_{k>=1} a(k) * x^k/k ) has integer coefficients and equals (1/x) * Series_Reversion( x*(1-x)/(1+x)^4 ). See A365754.
From Peter Bala, Jun 08 2024: (Start)
2*n*(n - 1)*(2*n - 1)*(51*n^2 - 144*n + 100)*a(n) = -(n - 1)*(5457*n^4 - 20865*n^3 + 26366*n^2 - 12172*n + 1560)*a(n-1) + 64*(2*n - 3)*(4*n - 5)*(4*n - 7)*(51*n^2 - 42*n + 7)*a(n-2) with a(0) = 1 and a(1) = 5.
The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
Conjecture: the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and positive integers n and r. See A352373 for a more general conjecture. (End)
a(n) ~ sqrt(3 + 5/sqrt(17)) * (51*sqrt(17) - 107)^n / (sqrt(Pi*n) * 2^(3*n + 3/2)). - Vaclav Kotesovec, Jun 12 2024
From Seiichi Manyama, Aug 09 2025: (Start)
a(n) = [x^n] 1/((1-x)^(2*n+1) * (1-2*x)^n).
a(n) = Sum_{k=0..n} 2^k * (-1)^(n-k) * binomial(4*n,k) * binomial(3*n-k,n-k).
a(n) = Sum_{k=0..n} 2^k * binomial(n+k-1,k) * binomial(3*n-k,n-k). (End)

A006934 A series for Pi.

Original entry on oeis.org

1, 1, 21, 671, 180323, 20898423, 7426362705, 1874409467055, 5099063967524835, 2246777786836681835, 2490122296790918386363, 1694873049836486741425113, 5559749161756484280905626951, 5406810236613380495234085140851, 12304442295910538475633061651918089
Offset: 0

Views

Author

Keywords

Comments

Formula (21) in Luke (see ref.): Let y = 4*n+1. Then for n -> oo
Pi ~ 4*(n!)^4*2^(4*n)/(y*((2*n)!)^2)*(sum_{k>=0}((-1)^k*y^(-2*k)* A006934(k)/A123854(k)))^2. (Luke does not reference the sequences in this form.) - Peter Luschny, Mar 23 2014
This might be related to the numerators of eq. (18) in N. Elezovic' "Asymptotic Expansions of Central Binomial...", J. Int. Seq. 17 (2014) # 14.2.1. - R. J. Mathar, Mar 23 2014
Several references give an erroneous value of 1874409465055 instead of a(7) in the formula for pi. - M. F. Hasler, Mar 23 2014

References

  • Y. L. Luke, The Special Functions and their Approximation, Vol. 1, Academic Press, NY, 1969, see p. 36.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A006934_list := proc(n) local k, f, bp;
    bp := proc(n,x) option remember; local k; if n = 0 then 1 else -x*add(binomial(n-1,2*k+1)*bernoulli(2*k+2)/(k+1)*bp(n-2*k-2,x), k=0..n/2-1) fi end:
    f := n -> 2^(3*n-add(i, i=convert(n,base,2)));
    add(bp(2*k,1/4)*binomial(4*k,2*k)*x^(2*k), k=0..n-1);
    seq((-1)^k*f(k)*coeff(%,x,2*k), k=0..n-1) end:
    A006934_list(15);  # Peter Luschny, Mar 23 2014
    # Second solution, without using Nörlund's generalized Bernoulli polynomials, based on Euler numbers:
    A006934_list := proc(n) local a,c,j;
    c := n -> 4^n/2^add(i, i=convert(n,base,2));
    a := [seq((-4)^j*euler(2*j)/(4*j), j=1..n)];
    expand(exp(add(a[j]*x^(-j), j=1..n))); taylor(%, x=infinity, n+2);
    subs(x=1/x, convert(%,polynom)): seq(c(iquo(j,2))*coeff(%,x,j), j=0..n) end:
    A006934_list(14); # Peter Luschny, Apr 08 2014
  • Mathematica
    A006934List[n_] := Module[{c, a, s, sx}, c[k_] := 4^k/2^Total[ IntegerDigits[k, 2]]; a = Table[(-4)^j EulerE[2j]/(4j), {j, 1, n}]; s[x_] = Series[Exp[Sum[a[[j]] x^(-j), {j, 1, n}]], {x, Infinity, n+2}] // Normal; sx = s[1/x]; Table[c[Quotient[j, 2]] Coefficient[sx, x, j], {j, 0, n}]];
    A006934List[14] (* Jean-François Alcover, Jun 02 2019, from second Maple program *)
  • Sage
    @CachedFunction
    def p(n):
        if n < 2: return 1
        return -add(binomial(n-1,k-1)*bernoulli(k)*p(n-k)/k for k in range(2,n+1,2))/2
    def A006934(n): return (-1)^n*p(2*n)*binomial(4*n,2*n)*2^(3*n-sum(n.digits(2)))
    [A006934(n) for n in (0..14)]  # Peter Luschny, Mar 24 2014

Formula

Let p(n,x) = sum(k=0..n, x^k*A220412(n,k))/A220411(n) then a(n) = (-1)^n*p(n,1/4)*A123854(n)*A001448(n). - Peter Luschny, Mar 23 2014
Pi = lim_{n->oo} 2^{4n+2}/((4n+1)*C(2n,n)^2)*(sum_{k=0..oo} (-1)^k*a(k)/(A123854(k)*(4n+1)^{2k}))^2. - M. F. Hasler, Mar 23 2014

Extensions

a(7) corrected, a(8)-a(14) from Peter Luschny, Mar 23 2014

A249332 a(n) = Sum_{k=0..2*n} binomial(2*n, k)^4.

Original entry on oeis.org

1, 18, 1810, 263844, 44916498, 8345319268, 1640651321764, 335556407724360, 70666388112940818, 15220552520052960516, 3337324864503769353060, 742446552655157791828680, 167167472732516775004539300, 38021985442071415426063237704, 8723111727436784830252513497928
Offset: 0

Views

Author

Michael Somos, Oct 25 2014

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(2*n,k)^4: k in [0..2*n]]): n in [0..30]]; // G. C. Greubel, Aug 04 2018
  • Mathematica
    Table[Sum[Binomial[2*n, k]^4, {k, 0, 2*n}], {n, 0, 30}] (* G. C. Greubel, Aug 04 2018 *)
  • PARI
    {a(n) = sum(k=0, 2*n, binomial( 2*n, k)^4)};
    

Formula

a(n) = A005260(2*n).

A259613 a(n) = binomial(6*n,2*n)/3, n>0, a(0)=1.

Original entry on oeis.org

1, 5, 165, 6188, 245157, 10015005, 417225900, 17620076360, 751616304549, 32308782859535, 1397281501935165, 60727722660586800, 2650087220696342700, 116043807643289338428, 5096278545356362962504, 224377658168860057076688
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 30 2015

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [Binomial(6*n,2*n)/3: n in [1..20]]; // Vincenzo Librandi, Jul 01 2015
  • Mathematica
    Join[{1}, Table[Binomial[6 n, 2 n]/3, {n, 30}]] (* Vincenzo Librandi, Jul 01 2015 *)
  • PARI
    vector(20,n, n--; if (n==0, 1, binomial(6*n,2*n)/3)) \\ Michel Marcus, Jul 01 2015
    

Formula

G.f.: A(x) = 1 + (x*B(x)')/(B(x)) where B(x) = 2 * (1 + x*B(x)^2)^2 / (1 - 2*x*B(x)^2 + sqrt(1-8*x*B(x)^2)).
a(n) ~ 3^(6*n-1/2) / (sqrt(Pi*n) * 2^(4*n+3/2)). - Vaclav Kotesovec, Jul 01 2015
a(n) = A025174(2*n), n>0. - R. J. Mathar, Jun 07 2016
From Peter Bala, Jun 08 2024: (Start)
a(n) = (9/2)*(6*n-1)*(6*n-5)*(3*n-1)*(3*n-2)/((4*n-1)*(4*n-3)*(2*n-1)*n) * a(n-1) with a(0) = 1 and a(1) = 5.
Right-hand side of the identity (1/3)*Sum_{k = 0..2*n} (-1)^k*binomial(-n, k)* binomial(5*n-k, 2*n-k) = (1/3)*binomial(6*n, 2*n). Compare with the identity Sum_{k = 0..n} (-1)^k*binomial(n, k)*binomial(5*n-k, 2*n-k) = binomial(4*n, 2*n). (End)
From Karol A. Penson, Jan 26 2025: (Start)
G.f. for 3*a(n),a(0)=1, denoted A, expressible entirely by radicals: A = A1 + A2 with
A1 = ((4*sqrt(4 - 27*sqrt(z)) + 12*i*sqrt(3)*z^(1/4))^(1/3) + (4*sqrt(4 - 27*sqrt(z)) - 12*i*sqrt(3)*z^(1/4))^(1/3))/(4*sqrt(4 - 27*sqrt(z))), and
A2 = (1/(4*sqrt(4 + 27*sqrt(z)) + 12*sqrt(3)*z^(1/4))^(1/3) + 1/(4*sqrt(4 + 27*sqrt(z)) - 12*sqrt(3)*z^(1/4))^(1/3))/sqrt(4 + 27*sqrt(z)),
where i = sqrt(-1), the imaginary unit. (End)

A277860 a(n) = Sum_{k=0..n-1} binomial(4k, 2k+1)*binomial(2k, k)*48^(n-1-k).

Original entry on oeis.org

0, 8, 720, 50400, 3220000, 196885920, 11756961216, 692835631488, 40536961717824, 2363784447147552, 137716866109432896, 8030173585594013568, 469162781054378536320, 27486632292027996114560, 1615617140290621588826880, 95302760085090826490672640
Offset: 1

Views

Author

Zhi-Wei Sun, Nov 02 2016

Keywords

Comments

Conjecture: For any prime p > 3 and positive integer n, we have
(Sum_{k=0..p*n-1} binomial(4k, 2k+1)*binomial(2k, k)/48^k - (p/3)*Sum_{r=0..n-1} binomial(4r, 2r+1)*binomial(2r, r)/48^r)*48^n/((p*n)^2*binomial(4n, 2n)*binomial(2n, n)) == (5/3)*B_{p-2}(1/3) (mod p), where (p/3) is the Legendre symbol and B_{p-2}(x) is the Bernoulli polynomial of degree p-2.
This conjecture with n = 1 gives the congruence a(p) == (5/12)*p^2*B_{p-2}(1/3) (mod p^3) for any prime p > 3.

Examples

			a(1) = 0 since binomial(4*0, 2*0+1)*binomial(2*0, 0)*48^(1-1-0) = 0.
a(2) = 8 since Sum_{k=0..1} binomial(4k, 2k+1)*binomial(2k, k)*48^(2-1-k) = binomial(4, 2+1)*binomial(2, 1)*48^0 = 8.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[Binomial[4k,2k+1]Binomial[2k,k]48^(n-1-k),{k,0,n-1}]
    Table[a[n],{n,1,16}]

Formula

a(n) ~ 2^(6*n - 9/2) / (Pi*n). - Vaclav Kotesovec, Nov 06 2021

A342983 Number of tree-rooted planar maps with n+1 vertices and n+1 faces.

Original entry on oeis.org

1, 6, 280, 23100, 2522520, 325909584, 47117214144, 7383099180600, 1229149289511000, 214527522662653200, 38887279926227853120, 7271332144993605081120, 1395321310426879365566400, 273697641660657106322640000, 54708248601655917595233984000
Offset: 0

Views

Author

Andrew Howroyd, Apr 03 2021

Keywords

Comments

The number of edges is 2*n.
Also, a(n) is the number of discrete walks that start and stop at the origin, never pass below the x-axis nor to the left of the y-axis, and, in any order, have n steps that increment x, n steps that decrement x, n steps that increment y, and n steps that decrement y. It is in this sense a way to generalize the 2n-step one-dimensional walks counted by A000108 to a count in two dimensions. Proof: There are A001448(n) ways to interleave two length-2n Dyck words (A000108(n)^2) - Lee A. Newberg, Nov 17 2023

Crossrefs

Central coefficients of A342982.
Even bisection of A215288.

Programs

  • PARI
    a(n) = {(4*n)!/(n!*(n+1)!)^2}

Formula

a(n) = (4*n)!/(n!*(n+1)!)^2.
a(n) = A000108(n)^2 * A001448(n) = A001246(n) * A001448(n). - Alois P. Heinz, Aug 02 2023

A359647 a(n) = [x^n] hypergeom([1/4, 3/4], [2], 64*x). The central terms of the Motzkin triangle A359364 without zeros.

Original entry on oeis.org

1, 6, 140, 4620, 180180, 7759752, 356948592, 17210021400, 859544957700, 44123307828600, 2315270298060720, 123691561681243920, 6707888537328997200, 368417878127146461600, 20455964090297751153600, 1146556787261188952159280, 64797319609481605046295780
Offset: 0

Views

Author

Peter Luschny, Jan 09 2023

Keywords

Comments

Number of Motzkin paths of length 4n with exactly 2n horizontal steps: a(1) = 6: UDHH, UHDH, UHHD, HUDH, HUHD, HHUD. - Alois P. Heinz, Aug 02 2023

Crossrefs

Programs

  • Maple
    ser := series(hypergeom([1/4, 3/4], [2], 64*x), x, 20):
    seq(coeff(ser, x, n), n = 0..16);

Formula

a(n) = A359364(4*n, 2*n).
a(n) = A000108(n) * A001448(n) = binomial(2*n,n)/(n+1)*binomial(4*n,2*n). - Alois P. Heinz, Aug 02 2023

A364518 Square array read by ascending antidiagonals: T(n,k) = [x^(2*k)] ( (1 + x)^(n+2)/(1 - x)^(n-2) )^k for n, k >= 0.

Original entry on oeis.org

1, 1, -2, 1, 0, 6, 1, 6, -10, -20, 1, 16, 70, 0, 70, 1, 30, 630, 924, 198, -252, 1, 48, 2310, 28672, 12870, 0, 924, 1, 70, 6006, 204204, 1385670, 184756, -4420, -3432, 1, 96, 12870, 860160, 19122246, 69206016, 2704156, 0, 12870, 1, 126, 24310, 2704156, 130378950, 1848483780, 3528923580, 40116600, 104006, -48620
Offset: 0

Views

Author

Peter Bala, Aug 07 2023

Keywords

Comments

Compare with A364303 and A364519.
Given two sequences of integers c = (c_1, c_2, ..., c_K) and d = (d_1, d_2, ..., d_L), where c_1 + ... + c_K = d_1 + ... + d_L, we can define the factorial ratio sequence u_n(c, d) = (c_1*n)!*(c_2*n)!* ... *(c_K*n)!/ ( (d_1*n)!*(d_2*n)!* ... *(d_L*n)! ) and ask whether it is integral for all n >= 0. The integer L - K is called the height of the sequence. Bober completed the classification of integral factorial ratio sequences of height 1 (see A295431). Soundararajan gives many examples of two-parameter families of integral factorial ratio sequences of height 2.
Each row of the present table is an integral factorial ratio sequence of height 1. It is usually assumed that the c's and d's are integers but here some of the c's and d's are half-integers. See A276098 and the cross references there for further examples of this type.
It is known that the unsigned version of row 0 (the central binomial numbers A000984) and row 2 satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and all positive integers n and r. We conjecture that all the row sequences of the table satisfy the same supercongruences.

Examples

			 Square array begins:
 n\k|  0   1      2        3           4             5
  - + - - - - - - - - - - - - - - - - - - - - - - - - -
  0 |  1  -2      6      -20          70          -252   ... see A000984
  1 |  1   0    -10        0         198             0   ... see A211419
  2 |  1   6     70      924       12870        184756   ... A001448
  3 |  1  16    630    28672     1385670      69206016   ... A091496
  4 |  1  30   2310   204204    19122246    1848483780   ... A061162
  5 |  1  48   6006   860160   130378950   20392706048   ... A276098
  6 |  1  70  12870  2704156   601080390  137846528820   ... A001448 bisected
  7 |  1  96  24310  7028736  2149374150  678057476096   ... A276099
		

Crossrefs

Cf. A000984 (row 0 unsigned), A211419 (row 1 unsigned without 0's), A001448 (row 2), A091496 (row 3), A061162 (row 4), A276098 (row 5), A001448 bisected (row 6), A276099 (row 7).

Programs

  • Maple
    T(n,k) = add( binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j), j = 0..2*k):
    # display as a square array
    seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
    # display as a sequence
    seq(seq(T(n-k, k), k = 0..n), n = 0..10);
  • PARI
    T(n,k) = sum(j = 0, 2*k, binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j));
    lista(nn) = for( n=0, nn, for (k=0, n, print1(T(n-k, k), ", "))); \\ Michel Marcus, Aug 13 2023

Formula

T(n,k) = Sum_{j = 0..2*k} binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j).
T(2,k) = binomial(4*k,2*k).
For n >= 3, T(n,k) = binomial(n*k-1,2*k) * hypergeom([-(n+2)*k, -2*k], [1 - n*k], -1) except when (n,k) = (3,1).
For n >= 2, T(n,k) = ((n+2)*k)!*((n-2)*k/2)!/(((n+2)*k/2)!*((n-2)*k)!*(2*k)!) by Kummer's Theorem.
T(n,k) = [x^k] (1 - x)^(2*k) * Chebyshev_T(n*k, (1 + x)/(1 - x)).
T(n,k) = Sum_{j = 0..k} binomial(2*n*k, 2*j)*binomial((n-1)*k-j-1, k-j).
For n >= 3, T(n,k) = binomial((n-1)*k-1,k) * hypergeom([-n*k, -k, -n*k + 1/2], [1 - (n-1)*k, 1/2], 1).
The row generating functions are algebraic functions over the field of rational functions Q(x).
Previous Showing 31-40 of 46 results. Next