A105748
Number of ways to use the elements of {1,..,k}, 0<=k<=2n, once each to form a collection of n (possibly empty) sets, each with at most 2 elements.
Original entry on oeis.org
1, 3, 10, 47, 313, 2744, 29751, 383273, 5713110, 96673861, 1830257967, 38326484944, 879473289521, 21944639630923, 591545277653354, 17131028946645255, 530424623323416617, 17485652721425863464, 611431929749388274471, 22604399407882099928577
Offset: 0
Robert A. Proctor (www.math.unc.edu/Faculty/rap/), Apr 18 2005
a(2) = 10 = |{ {{},{}}, {{},{1}}, {{},{1,2}}, {{1},{2}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}} }|.
Replacing "collection" by "sequence" gives
A003011.
Replacing "sets" by "lists" gives
A105747.
-
a:= proc(n) option remember; `if`(n<3, [1, 3, 10][n+1],
2*n*a(n-1)-(2*n-2)*a(n-2)-a(n-3))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Mar 11 2015
-
Sum[(k+i)!/i!/(k-i)!/2^i, {k, 0, n}, {i, 0, k}]
(* Second program: *)
a[n_] := E*Sqrt[2/Pi]*Sum[BesselK[k + 1/2, 1], {k, 0, n}]; Table[a[n] // Round, {n, 0, 25}] (* Jean-François Alcover, Jul 15 2017 *)
-
A105748(n) = sum(k=0,n,sum(i=0,k, binomial(k+i,k-i)*binomial(2*i,i)*i!>>i)) \\ M. F. Hasler, Oct 09 2012
Original entry on oeis.org
1, -1, 1, 2, -3, 1, -7, 12, -6, 1, 37, -67, 39, -10, 1, -266, 495, -310, 95, -15, 1, 2431, -4596, 3000, -1010, 195, -21, 1, -27007, 51583, -34566, 12320, -2660, 357, -28, 1, 353522, -680037, 463981, -171766, 39795, -6062, 602, -36, 1, -5329837, 10306152, -7124454, 2709525, -658791, 108927, -12432, 954
Offset: 0
Triangle begins:
1;
-1,1;
2,-3,1;
-7,12,-6,1;
37,-67,39,-10,1;
-266,495,-310,95,-15,1;
2431,-4596,3000,-1010,195,-21,1;
-27007,51583,-34566,12320,-2660,357,-28,1; ...
and is the matrix inverse of A100862:
1;
1,1;
1,3,1;
1,6,6,1;
1,10,21,10,1;
1,15,55,55,15,1; ...
-
{T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^n));(matrix(n+1,n+1,m,j,if(m>=j, (m-1)!*polcoeff(polcoeff(exp(X+Y*X^2/2+X*Y),m-1,x),j-1,y)))^-1)[n+1,k+1]}
A143968
Denominators of numbers with g.f. exp(1-(1-x)^(1/2)).
Original entry on oeis.org
1, 2, 4, 48, 384, 1920, 46080, 645120, 5160960, 185794560, 530841600, 40874803200, 280284364800, 51011754393600, 714164561510400, 42849873690624000, 1371195958099968000, 302731575164928000, 1678343852714360832000, 100120983364435968000, 1275541328062914232320000
Offset: 0
1, 1/2, 1/4, 7/48, 37/384, 133/1920, 2431/46080, 27007/645120, 176761/5160960, ...
-
S:= series(exp(1-(1-x)^(1/2)),x,21):
seq(denom(coeff(S,x,i)),i=0..20); # Robert Israel, Mar 23 2023
-
CoefficientList[Series[Exp[1-Sqrt[1-x]],{x,0,20}],x]//Denominator (* Harvey P. Dale, Sep 13 2019 *)
A281901
Number of scenarios in the Gift Exchange Game with n players and n wrapped gifts when a gift can be stolen at most n times.
Original entry on oeis.org
1, 2, 31, 18252, 1495388159, 34155922905682979, 350521520018942991464535019, 2371013832433361706367594400829713564440, 14584126149704606223764458141727351569547933381159988406, 107640669875812795238625627484701500354901860426640161278022882392148747562
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..26
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, Analysis of the Gift Exchange Problem, arXiv:1701.08394, 2017.
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix I to "Analysis of the gift exchange problem"
- Moa Apagodu, David Applegate, N. J. A. Sloane, and Doron Zeilberger, On-Line Appendix II to "Analysis of the gift exchange problem"
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
-
with(combinat):
b:= proc(n, i, t) option remember; `if`(t*i add(b(j, n+1, n), j=0..(n+1)*n):
seq(a(n), n=0..10);
-
multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[t*iJean-François Alcover, Mar 13 2017, translated from Maple *)
A144513
a(n) = Sum_{k=0..n} (n+k+2)!/((n-k)!*k!*2^k).
Original entry on oeis.org
2, 18, 162, 1670, 19980, 274932, 4296278, 75324762, 1466031690, 31386435410, 733391707752, 18578222154648, 507246285802802, 14851746921266010, 464244744007818090, 15431886798641124662, 543593886328031841828, 20228083875146926867932, 792934721766833544369830
Offset: 0
Equals 2*
A001514 (with a different offset).
-
f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f2(n),n=0..50)];
-
{a(n) = sum(k=0, n, (n+k+2)!/((n-k)!*k!*2^k))} \\ Seiichi Manyama, Apr 07 2019
A144514
a(n) = Sum_{k=0..n} (n+k+3)!/((n-k)!*k!*2^k).
Original entry on oeis.org
6, 84, 1050, 13980, 205800, 3368316, 61075854, 1219445100, 26635157010, 632479986600, 16235529291696, 448220024574504, 13247429692101150, 417453231024613140, 13974133833217747650, 495278130521939366196, 18530507890959175097784, 729908595489477119015700
Offset: 0
Equals 6*
A144506 (with a different offset).
-
f3:=proc(n) local k; add((n+k+3)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f3(n),n=0..50)];
-
Table[Sum[(n+k+3)!/((n-k)!k! 2^k),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jul 27 2019 *)
-
{a(n) = sum(k=0, n, (n+k+3)!/((n-k)!*k!*2^k))} \\ Seiichi Manyama, Apr 07 2019
A104548
Triangle read by rows giving coefficients of Bessel polynomial p_n(x).
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 15, 15, 0, 1, 10, 45, 105, 105, 0, 1, 15, 105, 420, 945, 945, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 0
Offset: 0
Bessel polynomials begin with:
x;
x + x^2;
3*x + 3*x^2 + x^3;
15*x + 15*x^2 + 6*x^3 + x^4;
105*x + 105*x^2 + 45*x^3 + 10*x^4 + x^5;
...
Triangle of coefficients begins as:
0;
1, 0;
1, 1 0;
1, 3, 3 0;
1, 6, 15, 15 0;
1, 10, 45, 105, 105 0;
1, 15, 105, 420, 945, 945 0;
1, 21, 210, 1260, 4725, 10395, 10395 0;
1, 28, 378, 3150, 17325, 62370, 135135, 135135 0;
Essentially the same as
A001498 (the main entry).
-
A104548:= func< n,k | k eq n select 0 else Binomial(n-1,k)*Factorial(n+k-1)/(2^k*Factorial(n-1)) >;
[A104548(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 02 2023
-
T[n_, k_]:= If[k==n, 0, Binomial[n-1,k]*(n+k-1)!/(2^k*(n-1)!)];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 02 2023 *)
-
def A104548(n,k): return 0 if (k==n) else binomial(n-1,k)*factorial(n+k-1)/(2^k*factorial(n-1))
flatten([[A104548(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 02 2023
A107103
Column 1 of triangle A107102, which is the matrix inverse of A100862.
Original entry on oeis.org
1, -3, 12, -67, 495, -4596, 51583, -680037, 10306152, -176591665, 3376207461, -71258869848, 1645797382177, -41289185878227, 1118136109703460, -32509366699961371, 1010047705084550823, -33397162601828122332, 1170937325957822375167, -43391988679237460897205
Offset: 0
-
{a(n)=local(X=x+x^2*O(x^n),Y=y+y^2*O(y^n));(matrix(n+2,n+2,m,k,if(m>=k, (m-1)!*polcoeff(polcoeff(exp(X+Y*X^2/2+X*Y),m-1,x),k-1,y)))^-1)[n+2,2]}
A144576
E.g.f.: exp(1-sqrt(1-2*x-4*x^2)).
Original entry on oeis.org
1, 1, 6, 31, 301, 3426, 51751, 926731, 19691106, 479961901, 13256384851, 408621822126, 13915350562081, 518741273626681, 21013220503491126, 919071064063596151, 43167975952565245501, 2167078807061679282306, 115795155400715170458631, 6561750899663711363984851
Offset: 0
-
f:= gfun:-rectoproc({a(n+5) = 64*(n+3)*(n+2)*(n+1)*a(n)+48*(n+3)*(n+2)*a(n+1)+4*(n+3)*(4*n^2+12*n+11)*a(n+2)+(12*n^2+60*n+73)*a(n+3)-(2*n+1)*a(n+4), a(0) = 1, a(1) = 1, a(2) = 6, a(3) = 31, a(4) = 301}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Dec 31 2019
-
With[{nn=20},CoefficientList[Series[Exp[1-Sqrt[1-2x-4x^2]],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Apr 30 2012 *)
A302285
Expansion of 1/(1 - x - x/(1 - 2*x - x/(1 - 3*x - x/(1 - 4*x - x/(1 - 5*x - x/(1 - ...)))))), a continued fraction.
Original entry on oeis.org
1, 2, 7, 33, 185, 1170, 8121, 60846, 486753, 4125852, 36846557, 345205559, 3381126995, 34524194712, 366635359887, 4041180951473, 46149726728969, 545161967955668, 6652026230285141, 83730953689450825, 1085924693069106823, 14494802798426546660, 198918641942013097723
Offset: 0
G.f. A(x) = 1 + 2*x + 7*x^2 + 33*x^3 + 185*x^4 + 1170*x^5 + 8121*x^6 + 60846*x^7 + 486753*x^8 + ...
-
b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, b(x-1, y-1)+b(x-1, y+1)+b(x-2, y)*(y+1)))
end:
a:= n-> b(2*n, 0):
seq(a(n), n=0..22); # Alois P. Heinz, Apr 12 2025
-
nmax = 22; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-x, 1 - (k + 1) x, {k, 1, nmax}]), {x, 0, nmax}], x]
Comments