cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 58 results. Next

A105748 Number of ways to use the elements of {1,..,k}, 0<=k<=2n, once each to form a collection of n (possibly empty) sets, each with at most 2 elements.

Original entry on oeis.org

1, 3, 10, 47, 313, 2744, 29751, 383273, 5713110, 96673861, 1830257967, 38326484944, 879473289521, 21944639630923, 591545277653354, 17131028946645255, 530424623323416617, 17485652721425863464, 611431929749388274471, 22604399407882099928577
Offset: 0

Views

Author

Robert A. Proctor (www.math.unc.edu/Faculty/rap/), Apr 18 2005

Keywords

Examples

			a(2) = 10 = |{ {{},{}}, {{},{1}}, {{},{1,2}}, {{1},{2}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1,2},{3,4}}, {{1,3},{2,4}}, {{1,4},{2,3}} }|.
		

Crossrefs

First differences: A001515.
Replacing "collection" by "sequence" gives A003011.
Replacing "sets" by "lists" gives A105747.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 3, 10][n+1],
          2*n*a(n-1)-(2*n-2)*a(n-2)-a(n-3))
        end:
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 11 2015
  • Mathematica
    Sum[(k+i)!/i!/(k-i)!/2^i, {k, 0, n}, {i, 0, k}]
    (* Second program: *)
    a[n_] := E*Sqrt[2/Pi]*Sum[BesselK[k + 1/2, 1], {k, 0, n}]; Table[a[n] // Round, {n, 0, 25}] (* Jean-François Alcover, Jul 15 2017 *)
  • PARI
    A105748(n) = sum(k=0,n,sum(i=0,k, binomial(k+i,k-i)*binomial(2*i,i)*i!>>i))  \\ M. F. Hasler, Oct 09 2012

Formula

a(n) = Sum_{0<=i<=k<=n} (k+i)!/i!/(k-i)!/2^i.
G.f.: 1/U(0) where U(k)= 1 - 3*x + x^2 - x*4*k - x^2*(2*k+1)*(2*k+2)/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 06 2012
G.f.: 1/(1-x)/Q(0), where Q(k)= 1 - x - x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 19 2013
a(n) = 2*n*a(n-1) -(2*n-2)*a(n-2) -a(n-3) for n>2. - Alois P. Heinz, Mar 11 2015
a(n) ~ 2^(n + 1/2) * n^n / exp(n-1). - Vaclav Kotesovec, May 05 2024

A107102 Matrix inverse of A100862.

Original entry on oeis.org

1, -1, 1, 2, -3, 1, -7, 12, -6, 1, 37, -67, 39, -10, 1, -266, 495, -310, 95, -15, 1, 2431, -4596, 3000, -1010, 195, -21, 1, -27007, 51583, -34566, 12320, -2660, 357, -28, 1, 353522, -680037, 463981, -171766, 39795, -6062, 602, -36, 1, -5329837, 10306152, -7124454, 2709525, -658791, 108927, -12432, 954
Offset: 0

Views

Author

Paul D. Hanna, May 21 2005

Keywords

Comments

Column 0 is signed A001515 (Bessel polynomial). Column 1 is A107103. Row sums are zeros for n>0. Absolute row sums form A107104, which equals 2*A043301(n-1) for n>0.
The row polynomials p_n(x) of this entry are (-1)^n B_n(1-x), where B_n(x) are the modified Carlitz-Bessel polynomials of A001497, e,g, (-1)^2 B_2(1-x) = (1-x) + (1-x)^2 = 2 - 3 x + x^2 = p_2(x). - Tom Copeland, Oct 10 2016

Examples

			Triangle begins:
1;
-1,1;
2,-3,1;
-7,12,-6,1;
37,-67,39,-10,1;
-266,495,-310,95,-15,1;
2431,-4596,3000,-1010,195,-21,1;
-27007,51583,-34566,12320,-2660,357,-28,1; ...
and is the matrix inverse of A100862:
1;
1,1;
1,3,1;
1,6,6,1;
1,10,21,10,1;
1,15,55,55,15,1; ...
		

Crossrefs

Programs

  • PARI
    {T(n,k)=local(X=x+x*O(x^n),Y=y+y*O(y^n));(matrix(n+1,n+1,m,j,if(m>=j, (m-1)!*polcoeff(polcoeff(exp(X+Y*X^2/2+X*Y),m-1,x),j-1,y)))^-1)[n+1,k+1]}

Formula

E.g.f.: exp((1-y)*(1-sqrt(1+2*x))). [Vladeta Jovovic, Dec 13 2008]

A143968 Denominators of numbers with g.f. exp(1-(1-x)^(1/2)).

Original entry on oeis.org

1, 2, 4, 48, 384, 1920, 46080, 645120, 5160960, 185794560, 530841600, 40874803200, 280284364800, 51011754393600, 714164561510400, 42849873690624000, 1371195958099968000, 302731575164928000, 1678343852714360832000, 100120983364435968000, 1275541328062914232320000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 02 2008

Keywords

Examples

			1, 1/2, 1/4, 7/48, 37/384, 133/1920, 2431/46080, 27007/645120, 176761/5160960, ...
		

Crossrefs

Cf. A143991 (numerators), A001515.

Programs

  • Maple
    S:= series(exp(1-(1-x)^(1/2)),x,21):
    seq(denom(coeff(S,x,i)),i=0..20); # Robert Israel, Mar 23 2023
  • Mathematica
    CoefficientList[Series[Exp[1-Sqrt[1-x]],{x,0,20}],x]//Denominator (* Harvey P. Dale, Sep 13 2019 *)

A281901 Number of scenarios in the Gift Exchange Game with n players and n wrapped gifts when a gift can be stolen at most n times.

Original entry on oeis.org

1, 2, 31, 18252, 1495388159, 34155922905682979, 350521520018942991464535019, 2371013832433361706367594400829713564440, 14584126149704606223764458141727351569547933381159988406, 107640669875812795238625627484701500354901860426640161278022882392148747562
Offset: 0

Views

Author

Alois P. Heinz, Feb 01 2017

Keywords

Comments

Also total number of partitions of [k] into exactly n nonempty blocks, each of size at most n+1, for any k in the range n <= k <= n^2+n.

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i, t) option remember; `if`(t*i add(b(j, n+1, n), j=0..(n+1)*n):
    seq(a(n), n=0..10);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_, t_] := b[n, i, t] = If[t*iJean-François Alcover, Mar 13 2017, translated from Maple *)

Formula

a(n) = A144510(n+1,n) = A144512(n,n).

A144513 a(n) = Sum_{k=0..n} (n+k+2)!/((n-k)!*k!*2^k).

Original entry on oeis.org

2, 18, 162, 1670, 19980, 274932, 4296278, 75324762, 1466031690, 31386435410, 733391707752, 18578222154648, 507246285802802, 14851746921266010, 464244744007818090, 15431886798641124662, 543593886328031841828, 20228083875146926867932, 792934721766833544369830
Offset: 0

Views

Author

N. J. A. Sloane, Dec 16 2008

Keywords

Crossrefs

Equals 2*A001514 (with a different offset).

Programs

  • Maple
    f2:=proc(n) local k; add((n+k+2)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f2(n),n=0..50)];
  • PARI
    {a(n) = sum(k=0, n, (n+k+2)!/((n-k)!*k!*2^k))} \\ Seiichi Manyama, Apr 07 2019

Formula

n^2*a(n) = (2*n+1)*(n^2+n+1)*a(n-1) + (n+1)^2*a(n-2). - Seiichi Manyama, Apr 07 2019

A144514 a(n) = Sum_{k=0..n} (n+k+3)!/((n-k)!*k!*2^k).

Original entry on oeis.org

6, 84, 1050, 13980, 205800, 3368316, 61075854, 1219445100, 26635157010, 632479986600, 16235529291696, 448220024574504, 13247429692101150, 417453231024613140, 13974133833217747650, 495278130521939366196, 18530507890959175097784, 729908595489477119015700
Offset: 0

Views

Author

N. J. A. Sloane, Dec 16 2008

Keywords

Crossrefs

Equals 6*A144506 (with a different offset).

Programs

  • Maple
    f3:=proc(n) local k; add((n+k+3)!/((n-k)!*k!*2^k),k=0..n); end; [seq(f3(n),n=0..50)];
  • Mathematica
    Table[Sum[(n+k+3)!/((n-k)!k! 2^k),{k,0,n}],{n,0,20}] (* Harvey P. Dale, Jul 27 2019 *)
  • PARI
    {a(n) = sum(k=0, n, (n+k+3)!/((n-k)!*k!*2^k))} \\ Seiichi Manyama, Apr 07 2019

Formula

a(n) ~ 2^(n + 7/2) * n^(n+3) / exp(n-1). - Vaclav Kotesovec, Apr 07 2019

A104548 Triangle read by rows giving coefficients of Bessel polynomial p_n(x).

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 15, 15, 0, 1, 10, 45, 105, 105, 0, 1, 15, 105, 420, 945, 945, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 0
Offset: 0

Views

Author

Eric W. Weisstein, Mar 14 2005

Keywords

Examples

			Bessel polynomials begin with:
      x;
      x +     x^2;
    3*x +   3*x^2 +    x^3;
   15*x +  15*x^2 +  6*x^3 +    x^4;
  105*x + 105*x^2 + 45*x^3 + 10*x^4 + x^5;
  ...
Triangle of coefficients begins as:
  0;
  1,  0;
  1,  1    0;
  1,  3,   3     0;
  1,  6,  15,   15      0;
  1, 10,  45,  105,   105      0;
  1, 15, 105,  420,   945,   945       0;
  1, 21, 210, 1260,  4725, 10395,  10395       0;
  1, 28, 378, 3150, 17325, 62370, 135135, 135135    0;
		

Crossrefs

Essentially the same as A001498 (the main entry).

Programs

  • Magma
    A104548:= func< n,k | k eq n select 0 else Binomial(n-1,k)*Factorial(n+k-1)/(2^k*Factorial(n-1)) >;
    [A104548(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 02 2023
    
  • Mathematica
    T[n_, k_]:= If[k==n, 0, Binomial[n-1,k]*(n+k-1)!/(2^k*(n-1)!)];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 02 2023 *)
  • SageMath
    def A104548(n,k): return 0 if (k==n) else binomial(n-1,k)*factorial(n+k-1)/(2^k*factorial(n-1))
    flatten([[A104548(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 02 2023

Formula

From G. C. Greubel, Jan 02 2023: (Start)
T(n, k) = binomial(n-1,k)*(n+k-1)!/(2^k*(n-1)!), with T(n, n) = 0.
Sum_{k=0..n} T(n, k) = A001515(n-1).
Sum_{k=0..n} (-1)^k*T(n, k) = A000806(n-1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000085(n-1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A001464(n-1). (End)

Extensions

T(0, 0) = 0 prepended by G. C. Greubel, Jan 02 2023

A107103 Column 1 of triangle A107102, which is the matrix inverse of A100862.

Original entry on oeis.org

1, -3, 12, -67, 495, -4596, 51583, -680037, 10306152, -176591665, 3376207461, -71258869848, 1645797382177, -41289185878227, 1118136109703460, -32509366699961371, 1010047705084550823, -33397162601828122332, 1170937325957822375167, -43391988679237460897205
Offset: 0

Views

Author

Paul D. Hanna, May 21 2005

Keywords

Comments

Column 0 of triangle A107102 is signed A001515 (Bessel polynomial).

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x^2*O(x^n),Y=y+y^2*O(y^n));(matrix(n+2,n+2,m,k,if(m>=k, (m-1)!*polcoeff(polcoeff(exp(X+Y*X^2/2+X*Y),m-1,x),k-1,y)))^-1)[n+2,2]}

Formula

|a(n)| = 2*A001515(n)-A001515(n-1). - Vladeta Jovovic, Aug 10 2006

A144576 E.g.f.: exp(1-sqrt(1-2*x-4*x^2)).

Original entry on oeis.org

1, 1, 6, 31, 301, 3426, 51751, 926731, 19691106, 479961901, 13256384851, 408621822126, 13915350562081, 518741273626681, 21013220503491126, 919071064063596151, 43167975952565245501, 2167078807061679282306, 115795155400715170458631, 6561750899663711363984851
Offset: 0

Views

Author

N. J. A. Sloane, Jan 07 2009

Keywords

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n+5) = 64*(n+3)*(n+2)*(n+1)*a(n)+48*(n+3)*(n+2)*a(n+1)+4*(n+3)*(4*n^2+12*n+11)*a(n+2)+(12*n^2+60*n+73)*a(n+3)-(2*n+1)*a(n+4), a(0) = 1, a(1) = 1, a(2) = 6, a(3) = 31, a(4) = 301}, a(n), remember):
    map(f, [$0..30]); # Robert Israel, Dec 31 2019
  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[1-Sqrt[1-2x-4x^2]],{x,0,nn}], x]Range[0,nn]!] (* Harvey P. Dale, Apr 30 2012 *)

Formula

a(n) ~ sqrt(5-sqrt(5))*(1+sqrt(5))^n*n^n/(2*n*exp(n-1)). - Vaclav Kotesovec, Jun 26 2013
D-finite with recurrence: a(n) +(-2*n+3)*a(n-1) +(-4*n^2+16*n-13)*a(n-2) +4*(-2*n+3)*a(n-3) -16*(n-1)*(n-3)*a(n-4)=0. - R. J. Mathar, Jan 23 2020

A302285 Expansion of 1/(1 - x - x/(1 - 2*x - x/(1 - 3*x - x/(1 - 4*x - x/(1 - 5*x - x/(1 - ...)))))), a continued fraction.

Original entry on oeis.org

1, 2, 7, 33, 185, 1170, 8121, 60846, 486753, 4125852, 36846557, 345205559, 3381126995, 34524194712, 366635359887, 4041180951473, 46149726728969, 545161967955668, 6652026230285141, 83730953689450825, 1085924693069106823, 14494802798426546660, 198918641942013097723
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 04 2018

Keywords

Comments

a(n) is the number of paths from (0,0) to (2n,0) on or above the x-axis with steps U=(1,1), D=(1,-1), and L=(2,0), where the level steps L at height k have k+1 colors for all k>=0. - Alexander Burstein, Apr 10 2025

Examples

			G.f. A(x) = 1 + 2*x + 7*x^2 + 33*x^3 + 185*x^4 + 1170*x^5 + 8121*x^6 + 60846*x^7 + 486753*x^8 + ...
		

Crossrefs

Programs

  • Maple
    b:= proc(x, y) option remember; `if`(y<0 or y>x, 0,
         `if`(x=0, 1, b(x-1, y-1)+b(x-1, y+1)+b(x-2, y)*(y+1)))
        end:
    a:= n-> b(2*n, 0):
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 12 2025
  • Mathematica
    nmax = 22; CoefficientList[Series[1/(1 - x + ContinuedFractionK[-x, 1 - (k + 1) x, {k, 1, nmax}]), {x, 0, nmax}], x]
Previous Showing 41-50 of 58 results. Next