cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 69 results. Next

A115598 Consider all Pythagorean triples (X,X+1,Z) ordered by increasing Z; sequence gives Z-(X+1) values.

Original entry on oeis.org

1, 8, 49, 288, 1681, 9800, 57121, 332928, 1940449, 11309768, 65918161, 384199200, 2239277041, 13051463048, 76069501249, 443365544448, 2584123765441, 15061377048200, 87784138523761, 511643454094368, 2982076586042449, 17380816062160328, 101302819786919521
Offset: 1

Views

Author

N. J. A. Sloane, Mar 14 2006

Keywords

Comments

Old name was A001653(n) - A046090(n).

Crossrefs

Essentially a duplicate of A001108.

Programs

  • Mathematica
    LinearRecurrence[{7,-7,1},{1,8,49},30] (* Harvey P. Dale, Oct 27 2013 *)
    CoefficientList[Series[-(x + 1)/((x - 1) (x^2 - 6 x + 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 28 2014 *)

Formula

a(n) = (-2+(3-2*sqrt(2))^n+(3+2*sqrt(2))^n)/4.
a(n) = 7*a(n-1)-7*a(n-2)+a(n-3).
G.f.: -x*(x+1) / ((x-1)*(x^2-6*x+1)).
a(n)^2 + (a(n)+1)^2 = A001542(n)^2 + 1^2. - Hermann Stamm-Wilbrandt, Jul 27 2014

Extensions

Corrected and edited by Colin Barker, Jul 31 2013

A182188 A sequence of row differences for table A182119.

Original entry on oeis.org

1, -1, -11, -69, -407, -2377, -13859, -80781, -470831, -2744209, -15994427, -93222357, -543339719, -3166815961, -18457556051, -107578520349, -627013566047, -3654502875937, -21300003689579
Offset: 0

Views

Author

Kenneth J Ramsey, Apr 17 2012

Keywords

Comments

This is a list of row differences corresponding to a difference of 1 in table A182119, column 0. If A181119(k+1,0) - A182119(k,0) = 1, then a(n) = A182119(k+1,n) - A182119(k,n).
If p is a prime of the form 8*n +- 3, then a(p) == 3 (mod p). If p is a prime of the form 8*n +- 1, then a(p) == -1 (mod p).

Crossrefs

Programs

  • Mathematica
    m = 13;n = 3; c = 0;
    list3 = Reap[While[c < 22, t = 6 n - m - 4; Sow[t];m = n; n = t;c++]][[2,1]]
    Table[1 -Fibonacci[2*n, 2], {n,0,40}] (* G. C. Greubel, May 24 2021 *)
  • Sage
    [1 - lucas_number1(2*n,2,-1) for n in (0..40)] # G. C. Greubel, May 24 2021

Formula

a(n) = 6*a(n-1) - a(n-2) - 4. [corrected by Klaus Purath, Mar 19 2021]
a(n) = -(A182189(n-1) + 2*A182190(n-1)).
a(n) = 2 - A182189(n).
From Klaus Purath, Mar 19 2021: (Start)
a(n) = 7*a(n-1) - 7*a(n-2) + a(n-3).
a(n) = (-1)*Sum_{i=1..2*n-1} A001333(i) for n > 0.
a(n) = 1 - A001542(n) for n > 0.
a(n) = 1 - 2*A001109(n) for n > 0.
a(n) = (-1)*A005409(2*n) for n > 0. (End)
G.f.: (1 - 8*x + 3*x^2)/((1-x)*(1-6*x+x^2)). - Chai Wah Wu, Apr 08 2021
a(n) = 1 - Pell(2*n), where Pell(n) = A000129(n). - G. C. Greubel, May 24 2021

A204519 Square root of floor(A055851(n)/6).

Original entry on oeis.org

0, 0, 0, 1, 2, 4, 11, 20, 40, 109, 198, 396, 1079, 1960, 3920, 10681, 19402, 38804, 105731, 192060, 384120, 1046629, 1901198, 3802396, 10360559, 18819920, 37639840, 102558961, 186298002
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Base-6 analog of A031150 [base 10], A204512 [base 8], A204517 (base 7), A204521 [base 5], A001353 [base 3], A001542 [base 2]. For bases 4 and 9, the corresponding sequence contains all integers.

Crossrefs

Programs

  • Mathematica
    Sqrt[Floor[Select[Range[100000],IntegerQ[Sqrt[Quotient[#^2,6]]]&]^2/6]] (* Vaclav Kotesovec, Nov 26 2012 *)
  • PARI
    b=6;for(n=1,2e9,issquare(n^2\b) & print1(sqrtint(n^2\b),","))

Formula

Conjecture (for n>=8): a(n) = 10*a(n-3) - a(n-6). - Vaclav Kotesovec, Nov 26 2012
Empirical g.f.: x^4*(x^3+4*x^2+2*x+1) / (x^6-10*x^3+1). - Colin Barker, Sep 15 2014

Extensions

More terms from Vaclav Kotesovec, Nov 26 2012

A204521 Square root of floor(A055812(n) / 5).

Original entry on oeis.org

0, 0, 0, 1, 3, 4, 8, 21, 55, 72, 144, 377, 987, 1292, 2584, 6765, 17711, 23184, 46368, 121393, 317811, 416020, 832040, 2178309, 5702887, 7465176
Offset: 1

Views

Author

M. F. Hasler, Jan 15 2012

Keywords

Comments

Or: Numbers whose square yields another square when written in base 5.
(For the first 3 terms, the above "base 5" interpretation is questionable, since they have only 1 digit in base 5. It is understood that dropping this digit yields 0.)
Base-5 analog of A031150 [base 10], A001353 [base 3], A001542 [base 2].
The square roots of A055812 are listed in A204520.

Crossrefs

Programs

  • PARI
    b=5;for(n=1,2e9,issquare(n^2\b) && print1(sqrtint(n^2\b),","))

Formula

Empirical g.f.: x^4*(x^5+3*x^4+8*x^3+4*x^2+3*x+1) / ((x^4-4*x^2-1)*(x^4+4*x^2-1)). - Colin Barker, Sep 15 2014

A207832 Numbers x such that 20*x^2 + 1 is a perfect square.

Original entry on oeis.org

0, 2, 36, 646, 11592, 208010, 3732588, 66978574, 1201881744, 21566892818, 387002188980, 6944472508822, 124613502969816, 2236098580947866, 40125160954091772, 720016798592704030
Offset: 0

Views

Author

Gary Detlefs, Feb 20 2012

Keywords

Comments

Denote as {a,b,c,d} the second-order linear recurrence a(n) = c*a(n-1) + d*a(n-2) with initial terms a, b. The following sequences and recurrence formulas are related to integer solutions of k*x^2 + 1 = y^2.
.
k x y
- ----------------------- -----------------------
2 A001542 {0,2,6,-1} A001541 {1,3,6,-1}
3 A001353 {0,1,4,-1} A001075 {1,2,4,-1}
5 A060645 {0,4,18,-1} A023039 {1,9,18,-1}
6 A001078 {0,2,10,-1} A001079 {1,5,10,-1}
7 A001080 {0,3,16,-1} A001081 {1,8,16,-1}
8 A001109 {0,1,6,-1} A001541 {1,3,6,-1}
10 A084070 {0,1,38,-1} A078986 {1,19,38,-1}
11 A001084 {0,3,20,-1} A001085 {1,10,20,-1}
12 A011944 {0,2,14,-1} A011943 {1,7,14,-1}
13 A075871 {0,180,1298,-1} A114047 {1,649,1298,-1}
14 A068204 {0,4,30,-1} A069203 {1,15,30,-1}
15 A001090 {0,1,8,-1} A001091 {1,4,8,-1}
17 A121740 {0,8,66,-1} A099370 {1,33,66,-1}
18 A202299 {0,4,34,-1} A056771 {1,17,34,-1}
19 A174765 {0,39,340,-1} A114048 {1,179,340,-1}
20 a(n) {0,2,18,-1} A023039 {1,9,18,-1}
21 A174745 {0,12,110,-1} A114049 {1,55,110,-1}
22 A174766 {0,42,394,-1} A114050 {1,197,394,-1}
23 A174767 {0,5,48,-1} A114051 {1,24,48,-1}
24 A004189 {0,1,10,-1} A001079 {1,5,10,-1}
26 A174768 {0,10,102,-1} A099397 {1,51,102,-1}
The sequence of the c parameter is listed in A180495.

Crossrefs

Programs

  • Magma
    m:=16; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(2*x/(1-18*x+x^2))); // Bruno Berselli, Jun 19 2019
    
  • Maple
    readlib(issqr):for x from 1 to 720016798592704030 do if issqr(20*x^2+1) then print(x) fi od;
  • Mathematica
    LinearRecurrence[{18, -1}, {0, 2}, 16] (* Bruno Berselli, Feb 21 2012 *)
    Table[2 ChebyshevU[-1 + n, 9], {n, 0, 16}]  (* Herbert Kociemba, Jun 05 2022 *)
  • Maxima
    makelist(expand(((2+sqrt(5))^(2*n)-(2-sqrt(5))^(2*n))/(4*sqrt(5))), n, 0, 15); /* Bruno Berselli, Jun 19 2019 */

Formula

a(n) = 18*a(n-1) - a(n-2).
From Bruno Berselli, Feb 21 2012: (Start)
G.f.: 2*x/(1-18*x+x^2).
a(n) = -a(-n) = 2*A049660(n) = ((2 + sqrt(5))^(2*n)-(2 - sqrt(5))^(2*n))/(4*sqrt(5)). (End)
a(n) = Fibonacci(6*n)/4. - Bruno Berselli, Jun 19 2019
For n>=1, a(n) = A079962(6n-3). - Christopher Hohl, Aug 22 2021

A074821 Numbers k such that tau(k) = tau(2k+1).

Original entry on oeis.org

2, 3, 4, 5, 10, 11, 23, 27, 29, 34, 38, 41, 46, 53, 55, 57, 62, 76, 77, 83, 89, 91, 93, 106, 113, 118, 123, 129, 131, 133, 136, 143, 145, 159, 161, 173, 177, 179, 185, 191, 201, 203, 205, 206, 212, 213, 218, 226, 232, 233, 235, 239, 251, 259, 267, 281, 291, 293
Offset: 1

Views

Author

Benoit Cloitre, Sep 08 2002

Keywords

Comments

If a term is a perfect square, then its square root must be in A001542. The first few such terms are the squares of 2, 2378, 93222358, 165326326037771920630... - Ivan Neretin, May 25 2016

Crossrefs

Cf. A000005 (tau), A001542, A005384 (subsequence), A099774.

Programs

  • Mathematica
    Select[Range[300], DivisorSigma[0, #] == DivisorSigma[0, 2 # + 1] &] (* Ivan Neretin, May 25 2016 *)
  • PARI
    isok(k) = numdiv(k) == numdiv(2*k+1); \\ Amiram Eldar, May 08 2025

A114619 a(n) = 2*A079291(n) (twice squares of Pell numbers).

Original entry on oeis.org

0, 2, 8, 50, 288, 1682, 9800, 57122, 332928, 1940450, 11309768, 65918162, 384199200, 2239277042, 13051463048, 76069501250, 443365544448, 2584123765442, 15061377048200, 87784138523762, 511643454094368
Offset: 0

Views

Author

Creighton Dement, Feb 17 2006

Keywords

Crossrefs

Programs

  • Magma
    [n le 3 select 2*(n-1)^2 else 5*Self(n-1) +5*Self(n-2) -Self(n-3): n in [1..31]]; // G. C. Greubel, Aug 18 2022
    
  • Mathematica
    2*Fibonacci[Range[0, 30], 2]^2 (* G. C. Greubel, Aug 18 2022 *)
  • SageMath
    [2*lucas_number1(n,2,-1)^2 for n in (0..30)] # G. C. Greubel, Aug 18 2022

Formula

a(n) = 2*A000129(n)^2.
G.f.: 2*x*(1-x)/((1+x)*(1-6*x+x^2)).
a(n) = A001333(n)^2 - (-1)^n. - Antonio Pane (apane1(AT)spc.edu), Dec 15 2007

Extensions

Entry revised by N. J. A. Sloane, Mar 15 2024

A120744 Least k>0 such that a centered polygonal number nk(k+1)/2+1 is a perfect square; or -1 if no such number exists.

Original entry on oeis.org

2, -1, 1, 3, 2, 7, 15, 1, 16, 8, 14, 4, 5, 15, 1, 2, 5, -1, 6, 3, 2, 39, 6, 1, 21, 7, 110, 3, 15, 7, 15, -1, 2, 8, 1, 4, 989, 8, 14, 2, 45, 15, 9, 4, 5, 335, 9, 1, 29, -1, 30, 15, 10, 415, 6, 2, 10, 32, 54, 3, 77, 55, 1, 5, 2, 7, 47750, 11, 15, 23, 47, -1, 48, 24, 16, 12, 5, 8, 2639, 1, 6720, 704, 38, 4, 2, 39, 505, 3, 13, 56, 9, 20, 13, 1631, 41
Offset: 1

Views

Author

Alexander Adamchuk, Apr 26 2007

Keywords

Examples

			a(5) = 2 because A129556(2) = 2>1 and A129556(1) = 0<1.
		

Crossrefs

Formula

a(n) = -1 for n in A166259.
a(n) = 1 for n = k^2-1.

Extensions

Edited and b-file provided by Max Alekseyev, Jan 20 2010

A321782 Triangle T(n, k) read by rows, n > 0 and 0 < k <= 3^(n-1): T(n, k) = sqrt((A321768(n, k) + A321770(n, k))/2).

Original entry on oeis.org

2, 3, 5, 4, 4, 8, 7, 8, 12, 9, 7, 9, 6, 5, 11, 10, 13, 19, 14, 12, 16, 11, 11, 21, 18, 19, 29, 22, 16, 20, 13, 10, 18, 15, 14, 22, 17, 11, 13, 8, 6, 14, 13, 18, 26, 19, 17, 23, 16, 18, 34, 29, 30, 46, 35, 25, 31, 20, 17, 31, 26, 25, 39, 30, 20, 24, 15, 14, 30
Offset: 1

Views

Author

Rémy Sigrist, Nov 18 2018

Keywords

Comments

This sequence and A321783 are related to a parametrization of the primitive Pythagorean triples in the tree described in A321768.
This sequence is "i" from the construction in A321768. It takes ternary digits of k-1 from most to least significant. Here the result is the same going instead least to most, due to how the relevant matrix product is related to its reversal. As a flat sequence this means a(A351702(n)) = a(n) unchanged. - Kevin Ryde, Mar 10 2022

Examples

			The first rows are:
   2
   3, 5, 4
   4, 8, 7, 8, 12, 9, 7, 9, 6
		

Crossrefs

Cf. A001542 (row sums).
Cf. A351702 (product reversal permutation).

Programs

  • PARI
    M = [[1, -2, 2; 2, -1, 2; 2, -2, 3], [1, 2, 2; 2, 1, 2; 2, 2, 3], [-1, 2, 2; -2, 1, 2; -2, 2, 3]];
    T(n, k) = my (t=[3; 4; 5], d=digits(3^(n-1)+k-1, 3)); for (i=2, #d, t = M[d[i]+1] * t); return (sqrtint((t[1, 1] + t[3, 1])/2))

Formula

Empirically:
- T(n, 1) = n + 1,
- T(n, (3^(n-1) + 1)/2) = A000129(n + 1),
- T(n, 3^(n-1)) = 2 * n.

A350984 a(0)=0, a(1)=18, a(2)=612; a(n) = 35*(a(n-1)-a(n-2))+a(n-3).

Original entry on oeis.org

0, 18, 612, 20790, 706248, 23991642, 815009580, 27686334078, 940520349072, 31950005534370, 1085359667819508, 36870278700328902, 1252504116143363160, 42548269670174018538, 1445388664669773267132, 49100666329102117063950, 1667977266524802206907168, 56662126395514172917779762, 1924844320180957076997604740
Offset: 0

Views

Author

N. J. A. Sloane, Mar 08 2022

Keywords

References

  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139.

Crossrefs

Equals 18*A029547(n-1) for n >= 1.
Equals 18*A091761.

Programs

  • Mathematica
    CoefficientList[Series[18*x/(x^2 - 34*x + 1), {x, 0, 20}], x] (* Wesley Ivan Hurt, Sep 03 2022 *)

Formula

From Chai Wah Wu, Mar 08 2022: (Start)
a(n) = 34*a(n-1) - a(n-2) for n > 1.
G.f.: 18*x/(x^2 - 34*x + 1). (End)
Previous Showing 41-50 of 69 results. Next