cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 695 results. Next

A075760 Nontrivial binomial coefficients which are perfect powers (A001597).

Original entry on oeis.org

36, 1225, 19600, 41616, 1413721, 48024900, 1631432881, 55420693056, 1882672131025, 63955431761796, 2172602007770041, 73804512832419600
Offset: 1

Views

Author

Robert G. Wilson v, Oct 08 2002

Keywords

Comments

Triangular-square numbers (A001110) are a subset, except for 0 and 1.
"For C(n,k) k>=4 and any l>=2 no solutions exist and this is what Erdos proved by an ingenious argument. ... C(50, 3) = 140^2 is the only solution for k = 3, l=2." page 13 of Aigner and Ziegler.

References

  • Martin Aigner and Gunter M. Ziegler, Proofs from THE BOOK, Second Edition, Springer-Verlag, Berlin, 2000, Chapter 3, "Binomial coefficients are (almost) never powers," pages 13-16.

Crossrefs

Cf. A001110.

Programs

  • Mathematica
    f[n_] := Apply[ GCD, Last[ Transpose[ FactorInteger[n]]]]; a = {}; Do[ If[ f[n(n - 1)/2] > 1, a = Append[a, Binomial[n, 2]]]; If[ f[n(n - 1)*(n - 2)/6] > 1, a = Append[a, Binomial[n, 3]]], {n, 5, 1500000}]

Extensions

a(10)-a(12) from Sean A. Irvine, Mar 05 2025

A088413 A088259 indexed by A001597.

Original entry on oeis.org

0, 1, 2, 4, 7, 8, 12, 15, 18, 22, 27, 32, 34, 45, 50, 69, 72, 83, 92, 104, 112, 113, 117, 135, 142, 147, 151, 153, 158, 163, 176, 181, 187, 192, 203, 210, 214, 219, 241, 243, 248, 262, 269, 276, 280, 291, 298, 302, 307, 313, 325, 330, 347, 354, 363, 377, 392, 402
Offset: 1

Views

Author

Ray Chandler, Sep 29 2003

Keywords

Crossrefs

Formula

a(n)=k such that A088259(n)=A001597(k+1).

Extensions

Offset changed by Andrew Howroyd, Sep 22 2024

A284743 Positive numbers that are not the sum of (any number of) distinct perfect powers (A001597).

Original entry on oeis.org

2, 3, 6, 7, 11, 15, 19, 23
Offset: 1

Views

Author

Amiram Eldar, Apr 01 2017

Keywords

Comments

Subsequence of A001422.
David Wells noted that 23 is the largest integer that is not the sum of distinct powers.

Examples

			22 is not in the sequence since 22 = 1 + 2^2 + 2^3 + 3^2.
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin 1987, p. 101.

Crossrefs

Programs

  • Mathematica
    PerfectPowerQ[n_] := n==1 || GCD@@FactorInteger[n][[All, 2]]>1; a=Select[Range[128], PerfectPowerQ[#] &]; nn = Dimensions[a][[1]]; t=Rest[CoefficientList[Series[Product[(1 + x^a[[k]]),{k,nn}],{x,0,a[[nn]]}], x]]; Flatten[Position[t, 0]]

A294076 Absolute difference between n-th stella octangula number (A007588) and the nearest perfect power (A001597).

Original entry on oeis.org

1, 0, 2, 2, 1, 2, 15, 3, 8, 5, 35, 50, 37, 25, 2, 11, 16, 8, 18, 10, 104, 5, 42, 25, 68, 104, 157, 35, 195, 92, 146, 15, 32, 17, 174, 134, 251, 145, 145, 263, 204, 160, 91, 230, 245, 124, 145, 337, 236, 24, 50, 26, 264, 415, 153, 234, 473, 552, 459, 182, 291
Offset: 0

Views

Author

Felix Fröhlich, Feb 07 2018

Keywords

Comments

There are only two square stella octangula numbers, namely those corresponding to n = 1 and n = 169, so a(1) = 0 and a(169) = 0 (cf. Wikipedia link).

Crossrefs

Programs

  • Mathematica
    f[n_, i_: 1] := Block[{k = n, j = If[i == 1, 1, -1]}, While[Nor[k == 1, GCD @@ FactorInteger[k][[All, 2]] > 1], k = k + j]; k]; {1}~Join~Array[Min@ Abs@ {# - f[#], f[#, 0] - #} &[# (2 #^2 - 1)] &, 60] (* Michael De Vlieger, Feb 21 2018 *)
  • PARI
    a007588(n) = n*(2*n^2-1)
    is_a001597(n) = ispower(n) || n==1
    nearestpower(n) = my(x=0); while(1, if(x < n, if(is_a001597(n-x), return(n-x), if(is_a001597(n+x), return(n+x))), if(is_a001597(n+x), return(n+x))); x++)
    a(n) = abs(a007588(n)-nearestpower(a007588(n)))

A326119 a(n) is the absolute value of the alternating sum of the first n increasing perfect powers (A001597): 1, 1-4, 1-4+8, 1-4+8-9, ...

Original entry on oeis.org

1, 3, 5, 4, 12, 13, 14, 18, 18, 31, 33, 48, 52, 69, 56, 72, 72, 97, 99, 117, 108, 135, 121, 168, 156, 187, 174, 226, 215, 269, 243, 286, 290, 335, 341, 388, 396, 445, 455, 506, 494, 530, 559, 597, 628, 668, 663, 706, 738, 783, 817, 864, 864, 900, 949, 987, 1038
Offset: 1

Views

Author

Richard Locke Peterson, Sep 10 2019

Keywords

Examples

			For n=8: a(8) = |1 - 4 + 8 - 9 + 16 - 25 + 27 - 32|.
		

Crossrefs

Programs

  • Mathematica
    t = Select[Range@2400, # == 1 || GCD @@ Last /@ FactorInteger@# > 1 &]; Abs@ Accumulate[t (-1)^Range@ Length[t]] (* Giovanni Resta, Sep 11 2019 *)
  • PARI
    seq(n)={my(v=vector(n), i=0, k=0, s=0); while(i<#v, k++; if(ispower(k)||k==1, s=k-s; i++; v[i]=abs(s))); v} \\ Andrew Howroyd, Sep 10 2019

Formula

a(n) = abs(Sum_{k=1..n} (-1)^k*A001597(k)). - Andrew Howroyd, Sep 10 2019

A332008 Numbers k such that phi(k) and phi(k+1) are perfect powers (A001597).

Original entry on oeis.org

1, 15, 16, 63, 101, 125, 255, 256, 272, 504, 512, 513, 629, 679, 1358, 1359, 1728, 1970, 2047, 2222, 2509, 2834, 3458, 3705, 4094, 4095, 4400, 4577, 4616, 4913, 5403, 6817, 7295, 7956, 8729, 11667, 11672, 16132, 16384, 16523, 17507, 23085, 24198, 24564, 24624, 25220, 25601, 27216, 27384, 28564, 29444
Offset: 1

Views

Author

Antonio Roldán, Feb 04 2020

Keywords

Examples

			phi(101) = 10^2, and phi(102) = 2^5.
phi(3458) = 6^4, and phi(3459) = 48^2.
		

Crossrefs

Programs

  • Magma
    [1] cat [k:k in [3..30000]|IsPower(EulerPhi(k))  and IsPower(EulerPhi(k+1))]; // Marius A. Burtea, Feb 05 2020
  • Mathematica
    perfectPowerQ[1] = True; perfectPowerQ[n_] := GCD @@ FactorInteger[n][[;; , 2]] > 1; Select[Range[30000], And @@ perfectPowerQ /@ EulerPhi[# + {0, 1}] &] (* Amiram Eldar, Feb 04 2020 *)
  • PARI
    v=[1]; for(i = 2, 30000, if(ispower(eulerphi(i)), if(ispower(eulerphi(i+1)), v = concat(v, i)))); v
    

A362426 Number of compositions (ordered partitions) of n into 2 perfect powers (A001597).

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 1, 2, 2, 0, 2, 2, 0, 0, 1, 4, 1, 0, 2, 0, 0, 0, 2, 2, 2, 0, 2, 2, 0, 2, 1, 4, 2, 2, 4, 2, 0, 0, 4, 4, 0, 2, 2, 2, 0, 0, 2, 0, 3, 0, 4, 2, 1, 0, 0, 4, 2, 2, 0, 2, 0, 2, 1, 4, 0, 0, 4, 0, 0, 0, 3, 2, 2, 0, 2, 0, 0, 0, 2, 2, 2, 0, 0, 4, 0, 0, 0, 4, 2, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 19 2023

Keywords

Crossrefs

Cf. A001597.

Programs

  • Mathematica
    perfectPowerQ[n_] := n == 1 || GCD @@ FactorInteger[n][[;; , 2]] > 1; a[n_] := Total[Multinomial @@ Tally[#][[;; , 2]] & /@ Select[IntegerPartitions[n, {2}], AllTrue[#, perfectPowerQ] &]]; Array[a, 100, 0] (* Amiram Eldar, May 05 2023 *)

A371223 Perfect powers (A001597) equal to the sum of a factorial number (A000142) and a Fibonacci number (A000045).

Original entry on oeis.org

1, 4, 8, 9, 25, 27, 32, 36, 121, 125, 128, 2704, 5041, 5184
Offset: 1

Views

Author

Gonzalo Martínez, Mar 23 2024

Keywords

Comments

Listed terms are 1, 2^2, 2^3, 3^2, 5^2, 3^3, 2^5, 6^2, 11^2, 5^3, 2^7, 52^2, 71^2 and 72^2.
It is observed that 4, 8, 25, 121 and 5041 are also terms of A227644 (Perfect powers equal to the sum of two factorial numbers), where in turn 25, 121 and 5041 are terms of A085692 (Brocard's problem), while the first 4 terms and 36 are part of A272575 (Perfect powers that are the sum of two Fibonacci numbers).
On the other hand, 4, 8, 32 and 128 are terms of A000079.
The representation for each term is as follows.
1 = 1! + 0
4 = 1! + 3 = 2! + 2
8 = 3! + 2
9 = 1! + 8 = 3! + 3
25 = 4! + 1
27 = 3! + 21 = 4! + 3
32 = 4! + 8
36 = 2! + 34
121 = 5! + 1
125 = 5! + 5
128 = 5! + 8
2704 = 5! + 2584
5041 = 7! + 1
5184 = 7! + 144

Examples

			128 is a term because 128 = 2^7 and 128 = 5! + 8, where 8 is a Fibonacci number.
		

Crossrefs

A380318 Product of the first n perfect powers (A001597).

Original entry on oeis.org

1, 1, 4, 32, 288, 4608, 115200, 3110400, 99532800, 3583180800, 175575859200, 11236854988800, 910185254092800, 91018525409280000, 11013241574522880000, 1376655196815360000000, 176211865192366080000000, 25374508587700715520000000, 4288291951321420922880000000, 840505222458998500884480000000, 181549128051143676191047680000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 20 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1},FoldList[Times,Join[{1},Select[Range[250],GCD@@FactorInteger[#][[All,2]]>1&]]]] (* Harvey P. Dale, May 03 2025 *)

A386242 a(n) is the least perfect power A001597 with binary weight n.

Original entry on oeis.org

1, 9, 25, 27, 121, 125, 1521, 2025, 5625, 24025, 42875, 59319, 32761, 393129, 851929, 1540081, 6275025, 15327225, 27258841, 41925625, 127893481, 243204025, 385611769, 268336125, 1979449081, 4823441401, 12870221809, 25698491351, 51354402813, 127506840561, 205822820329
Offset: 1

Views

Author

Hugo Pfoertner, Jul 23 2025

Keywords

Crossrefs

Programs

  • Mathematica
    upto = 10^11; L = Table[2 upto, {2 + Log2@ upto}]; Do[n = 1; While[(v = n^k) <= upto, nb = Plus @@ IntegerDigits[v, 2]; If[L[[nb]] > v, L[[nb]] = v]; n++], {k, 2, Log2[upto]}]; Take[L, Position[L, 2 upto][[1, 1]] - 1] (* Giovanni Resta, Jul 23 2025 *)

Extensions

a(27)-a(31) from Giovanni Resta, Jul 23 2025
Previous Showing 71-80 of 695 results. Next