cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A058365 Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 8 sites wide.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 9, 10, 11, 12, 13, 14, 15, 16, 25, 35, 46, 58, 71, 85, 100, 116, 141, 176, 222, 280, 351, 436, 536, 652, 793, 969, 1191, 1471, 1822, 2258, 2794, 3446, 4239, 5208, 6399, 7870, 9692, 11950, 14744, 18190, 22429, 27637, 34036, 41906
Offset: 1

Views

Author

Yong Kong (ykong(AT)curagen.com), Dec 17 2000

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 1...m-1, a(m) = m+1. The generating function is (x+m*x^m)/(1-x-x^m). Also a(n) = 1 + n*Sum_{i=1..n/m} binomial(n-1-(m-1)*i, i-1)/i. This gives the number of ways to cover (without overlapping) a ring lattice (or necklace) of n sites with molecules that are m sites wide. Special cases: m=2: A000204, m=3: A001609, m=4: A014097, m=5: A058368, m=6: A058367, m=7: A058366, m=8: A058365, m=9: A058364.

Examples

			a(8) = 9 because there is one way to put zero molecule to the necklace and 8 ways to put one molecule.
		

References

  • E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
  • Y. Kong, General recurrence theory of ligand binding on a three-dimensional lattice, J. Chem. Phys. Vol. 111 (1999), pp. 4790-4799.

Crossrefs

Formula

a(n) = 1 + n*sum(binomial(n-1-7*i, i-1)/i, i=1..n/8). a(n) = a(n-1) + a(n-8), a(n) = 1 for n = 1..7, a(8) = 9. generating function = (x+8*x^8)/(1-x-x^8).

A058366 Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 7 sites wide.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 8, 9, 10, 11, 12, 13, 14, 22, 31, 41, 52, 64, 77, 91, 113, 144, 185, 237, 301, 378, 469, 582, 726, 911, 1148, 1449, 1827, 2296, 2878, 3604, 4515, 5663, 7112, 8939, 11235, 14113, 17717, 22232, 27895, 35007, 43946, 55181, 69294, 87011
Offset: 1

Views

Author

Yong Kong (ykong(AT)curagen.com), Dec 17 2000

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 1...m-1, a(m) = m+1. The generating function is (x+m*x^m)/(1-x-x^m). Also a(n) = 1 + n*Sum_{i=1..n/m} binomial(n-1-(m-1)*i, i-1)/i. This gives the number of ways to cover (without overlapping) a ring lattice (or necklace) of n sites with molecules that are m sites wide. Special cases: m=2: A000204, m=3: A001609, m=4: A014097, m=5: A058368, m=6: A058367, m=7: A058366, m=8: A058365, m=9: A058364.

Examples

			a(7) = 8 because there is one way to put zero molecule to the necklace and 7 ways to put one molecule.
		

References

  • E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
  • Y. Kong, General recurrence theory of ligand binding on a three-dimensional lattice, J. Chem. Phys. Vol. 111 (1999), pp. 4790-4799.

Crossrefs

Formula

a(n) = 1 + n*sum(binomial(n-1-6*i, i-1)/i, i=1..n/7). a(n) = a(n-1) + a(n-7), a(n) = 1 for n = 1..6, a(7) = 8. generating function = (x+7*x^7)/(1-x-x^7).

A058367 Number of ways to cover (without overlapping) a ring lattice (necklace) of n sites with molecules that are 6 sites wide.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 8, 9, 10, 11, 12, 19, 27, 36, 46, 57, 69, 88, 115, 151, 197, 254, 323, 411, 526, 677, 874, 1128, 1451, 1862, 2388, 3065, 3939, 5067, 6518, 8380, 10768, 13833, 17772, 22839, 29357, 37737, 48505, 62338, 80110, 102949, 132306, 170043, 218548
Offset: 1

Views

Author

Yong Kong (ykong(AT)curagen.com), Dec 17 2000

Keywords

Comments

This comment covers a family of sequences which satisfy a recurrence of the form a(n) = a(n-1) + a(n-m), with a(n) = 1 for n = 1...m-1, a(m) = m+1. The generating function is (x+m*x^m)/(1-x-x^m). Also a(n) = 1 + n*Sum_{i=1..n/m} binomial(n-1-(m-1)*i, i-1)/i. This gives the number of ways to cover (without overlapping) a ring lattice (or necklace) of n sites with molecules that are m sites wide. Special cases: m=2: A000204, m=3: A001609, m=4: A014097, m=5: A058368, m=6: A058367, m=7: A058366, m=8: A058365, m=9: A058364.

Examples

			a(6) = 7 because there is one way to put zero molecule to the necklace and 6 ways to put one molecule.
		

References

  • E. Di Cera and Y. Kong, Theory of multivalent binding in one and two-dimensional lattices, Biophysical Chemistry, Vol. 61 (1996), pp. 107-124.
  • Y. Kong, General recurrence theory of ligand binding on a three-dimensional lattice, J. Chem. Phys. Vol. 111 (1999), pp. 4790-4799.

Crossrefs

Formula

a(n) = 1 + n*sum(binomial(n-1-5*i, i-1)/i, i=1..n/6). a(n) = a(n-1) + a(n-6), a(n) = 1 for n = 1..5, a(6) = 7. generating function = (x+6*x^6)/(1-x-x^6).

A049194 Number of digits in n-th term of A001387.

Original entry on oeis.org

1, 2, 3, 6, 8, 12, 18, 27, 39, 58, 85, 125, 183, 269, 394, 578, 847, 1242, 1820, 2668, 3910, 5731, 8399, 12310, 18041, 26441, 38751, 56793, 83234, 121986, 178779, 262014, 384000, 562780, 824794, 1208795, 1771575, 2596370, 3805165, 5576741
Offset: 1

Views

Author

Keywords

References

  • Peter A. Hendriks, "A binary variant of Conway's audioactive sequence", lecture at 1192nd meeting of WWWW, Groningen, The Netherlands (Jul 15 1999).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x+x^3-x^4-x^5)/(1-x-x^2+x^5),{x,0,50}],x] (* Peter J. C. Moses, Jun 21 2013 *)
  • PARI
    a(n) = if (n==3, 3, if (n==4, 6, floor((8/9 + (1/18)*(748 - 36*sqrt(93))^(1/3) + (1/18)*(748 + 36*sqrt(93))^(1/3)) * (1/3 + (1/6)*(116 - 12*sqrt(93))^(1/3) + (1/6)*(116 + 12*sqrt(93))^(1/3))^(n-1)))) \\ Michel Marcus, Mar 04 2013
    
  • PARI
    a(n) = my(v=vector(n), u=[1,2,3,6]); if(n<=4, u[n], for(i=1, 4, v[i]=u[i]); for(i=5, n, v[i]=v[i-1]+v[i-3]+!(i%2)); v[n]) \\ Jianing Song, Apr 28 2019

Formula

a(n) = (8/9 + (1/18)*(748 - 36*sqrt(93))^(1/3) + (1/18)*(748 + 36*sqrt(93))^(1/3)) * (1/3 + (1/6)*(116 - 12*sqrt(93))^(1/3) + (1/6)*(116 + 12*sqrt(93))^(1/3))^(n-1).
The number of digits is equal to c*l^n rounded down to the nearest integer, where c and l are the real roots of 3x^3 - 8x^2 + 5x - 1 and x^3 - x^2 - 1 respectively, for all n except n = 2 and n = 3.
From Jianing Song, Apr 28 2019: (Start)
a(n) = a(n-1) + a(n-2) - a(n-5) for n >= 7. [Derived from the T. Sillke link above.]
a(n) = a(n-1) + a(n-3) if n is odd, a(n-1) + a(n-3) + 1 if n is even, n >= 5 (this does not hold for n = 4).
Limit_{n->oo} a(n)/A001609(n) = c, where c = 1.276742... is the unique real root of 3x^3 - 4x^2 + x - 1. (End)

Extensions

More terms and formulas supplied by Gerton Lunter (gerton(AT)math.rug.nl)

A112455 a(n) = -a(n-2) - a(n-3).

Original entry on oeis.org

-3, 0, 2, 3, -2, -5, -1, 7, 6, -6, -13, 0, 19, 13, -19, -32, 6, 51, 26, -57, -77, 31, 134, 46, -165, -180, 119, 345, 61, -464, -406, 403, 870, 3, -1273, -873, 1270, 2146, -397, -3416, -1749, 3813, 5165, -2064, -8978, -3101, 11042, 12079, -7941
Offset: 0

Views

Author

Anthony C Robin, Dec 13 2005

Keywords

Comments

This sequence resembles the Perrin sequence, A001608. Like many such sequences with a(1)=0, any prime p divides a(p). The first pseudoprime (composite n divides a(n)) is 121.

Crossrefs

Programs

  • GAP
    a:=[-3,0,2];; for n in [4..60] do a[n]:=-a[n-2]-a[n-3]; od; a; # G. C. Greubel, May 19 2019
  • Magma
    I:=[-3,0,2]; [n le 3 select I[n] else -Self(n-2) -Self(n-3): n in [1..60]]; // G. C. Greubel, May 19 2019
    
  • Maple
    A112455 := proc(n)
        option remember ;
        if n <= 2 then
            op(n+1,[-3,0,2]) ;
        else
            -procname(n-2)-procname(n-3) ;
        end if;
    end proc: # R. J. Mathar, Feb 18 2024
  • Mathematica
    Table[ -Tr[MatrixPower[{{0, 0, -1}, {1, 0, -1}, {0, 1, 0}}, n]], {n, 1, 60}] (* Artur Jasinski, Jan 10 2007 *)
    LinearRecurrence[{0,-1,-1}, {-3,0,2}, 60] (* G. C. Greubel, May 19 2019 *)
  • PARI
    Vec(-(3+x^2)/(1+x^2+x^3)+O(x^60)) \\ Charles R Greathouse IV, May 15 2013
    
  • Sage
    (-(3+x^2)/(1+x^2+x^3)).series(x, 60).coefficients(x, sparse=False) # G. C. Greubel, May 19 2019
    

Formula

a(n) = - trace({{0, 0, -1}, {1, 0, -1}, {0, 1, 0}})^n. - Artur Jasinski, Jan 10 2007
From R. J. Mathar, Oct 24 2009: (Start)
G.f.: -(3+x^2)/(1+x^2+x^3).
a(n) = -3*A077962(n) - A077962(n-2). (End)
a(n) = (-1)^(n+1)*(A001609(n)^2 - A001609(2*n))/2. - Greg Dresden, Apr 14 2023

Extensions

Edited by Don Reble, Jan 25 2006

A001645 A Fielder sequence.

Original entry on oeis.org

1, 3, 7, 11, 26, 45, 85, 163, 304, 578, 1090, 2057, 3888, 7339, 13862, 26179, 49437, 93366, 176321, 332986, 628852, 1187596, 2242800, 4235569, 7998951, 15106172, 28528288, 53876211, 101746240, 192149690, 362878313, 685302531, 1294206745, 2444133829
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,3,7,11,26]; [n le 5 select I[n] else Self(n-1) + Self(n-2) + Self(n-3) + Self(n-5): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001645:=-(1+2*z+3*z**2+5*z**4)/(-1+z+z**2+z**3+z**5); [Conjectured by Simon Plouffe in his 1992 dissertation.]
  • Mathematica
    LinearRecurrence[{1, 1, 1, 0, 1}, {1, 3, 7, 11, 26}, 50] (* T. D. Noe, Aug 09 2012 *)
    CoefficientList[Series[x*(1+2*x+3*x^2+5*x^4)/(1-x-x^2-x^3-x^5), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(x*(1+2*x+3*x^2+5*x^4)/(1-x-x^2-x^3-x^5)+x*O(x^n),n))
    

Formula

G.f.: x*(1+2*x+3*x^2+5*x^4)/(1-x-x^2-x^3-x^5).
a(n) = trace(M^n), where M = [0, 0, 0, 0, 1; 1, 0, 0, 0, 0; 0, 1, 0, 0, 1; 0, 0, 1, 0, 1; 0, 0, 0, 1, 1] is the 5 x 5 companion matrix to the monic polynomial x^5 - x^4 - x^3 - x^2 - 1. It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Jan 09 2023

A080839 Number of positive increasing integer sequences of length n with Gilbreath transform (that is, the diagonal of leading successive absolute differences) given by {1,1,1,1,1,...}.

Original entry on oeis.org

1, 1, 1, 2, 6, 27, 180, 1786, 26094, 559127, 17535396, 804131875, 53833201737
Offset: 1

Views

Author

John W. Layman, Mar 28 2003

Keywords

Comments

From T. D. Noe, Feb 05 2007: (Start)
The slowest-growing sequence of length n is 1,2,4,6,...,2(n-1). The fastest-growing sequence is 1,2,4,8,...,2^(n-1).
The ratio a(n+1)a(n-1)/a(n)^2 appears to converge to a constant near 1.46, which is the approximate growth rate of A001609. Are the sequences related?
(End)
Also, a(n) is the number of (not necessarily increasing) positive integer sequences of length n-1 with Gilbreath transform (1, ..., 1). - Pontus von Brömssen, May 13 2023

Examples

			The table below shows that {1,2,4,6,10} is one of the 6 sequences of length 5 that satisfy the stated condition:
   1
   2 1
   4 2 1
   6 2 0 1
  10 4 2 2 1
		

Crossrefs

Cf. also A136465, the total number of increasing sequences with the same maximum length. [From Charles R Greathouse IV, Aug 08 2010]

Extensions

More terms from T. D. Noe, Feb 05 2007
Added "positive" to definition. - N. J. A. Sloane, May 13 2023

A049064 Describe the previous term in binary (method A - initial term is 0).

Original entry on oeis.org

0, 10, 1110, 11110, 100110, 1110010110, 111100111010110, 100110011110111010110, 1110010110010011011110111010110, 1111001110101100111001011010011011110111010110, 1001100111101110101100111100111010110111001011010011011110111010110
Offset: 1

Views

Author

Keywords

Comments

Method A = 'frequency' (in binary mode) followed by 'digit'-indication.
The number of digits of a(n) is A001609(n) except for n = 2. See the link from T. Sillke below. - Jianing Song, Mar 16 2019

Examples

			E.g., the term after 11110 is obtained by saying "four (i.e., 100 in binary mode) 1, one 0", which gives 100110.
		

Crossrefs

Cf. A001387 (initial term is 1), A001391, A001609 (number of digits), A259710 (written in decimal).
Decimal look-and-say sequences: A005150, A006751, A006715, A001140, A001141, A001143, A001145, A001151, A001154.

Formula

a(n) = A001391(n-1), n > 1. - R. J. Mathar, Oct 15 2008

Extensions

Edited by Charles R Greathouse IV, Apr 06 2010
a(11) from Kade Robertson, Jun 24 2015
Offset corrected by Jianing Song, Mar 16 2019

A001641 A Fielder sequence: a(n) = a(n-1) + a(n-2) + a(n-4).

Original entry on oeis.org

1, 3, 4, 11, 16, 30, 50, 91, 157, 278, 485, 854, 1496, 2628, 4609, 8091, 14196, 24915, 43720, 76726, 134642, 236283, 414645, 727654, 1276941, 2240878, 3932464, 6900996, 12110401, 21252275, 37295140, 65448411, 114853952, 201554638, 353703730, 620706779
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    I:=[1,3,4,11]; [n le 4 select I[n] else Self(n-1) + Self(n-2) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 09 2018
  • Maple
    A001641:=-(1+2*z+4*z**3)/(z+1)/(z**3-z**2+2*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{1, 1, 0, 1}, {1, 3, 4, 11}, 50] (* T. D. Noe, Aug 09 2012 *)
  • Maxima
    a(n):=(sum(sum(binomial(j,n-4*k+3*j)*binomial(k,j),j,floor((4*k-n)/3),floor((4*k-n)/2))/k,k,1,n))*n; /* Vladimir Kruchinin, May 25 2011 */
    
  • PARI
    a(n)=if(n<0,0,polcoeff(x*(1+2*x+4*x^3)/(1-x-x^2-x^4)+x*O(x^n),n))
    

Formula

G.f.: x*(1+2*x+4*x^3)/(1-x-x^2-x^4).
a(n) = n*Sum_{k=1..n} Sum_{j=floor((4*k-n)/3)..floor((4*k-n)/2)} binomial(j,n-4*k+3*j)*binomial(k,j)/k. - Vladimir Kruchinin, May 25 2011
a(n) = Trace(M^n), where M = [0, 0, 0, 1; 1, 0, 0, 0; 0, 1, 0, 1; 0, 0, 1, 1] is the companion matrix to the monic polynomial x^4 - x^3 - x^2 - 1. It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Dec 31 2022

A293343 Dimensions of the squares of a certain family of error-correcting codes.

Original entry on oeis.org

7, 11, 16, 37, 71, 123, 232, 441, 804, 1475
Offset: 3

Views

Author

Eric M. Schmidt, Oct 07 2017

Keywords

Comments

The codes themselves have dimensions A001609(n). (Take s=3 in Theorem 6.1 of [Cascudo].) - Eric M. Schmidt, Oct 12 2017

Crossrefs

Previous Showing 11-20 of 23 results. Next