cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 326 results. Next

A344705 a(n) = n + A001615(n) - sigma(n), where A001615 is the Dedekind psi-function, and sigma(n) gives the sum of divisors of n; difference between psi and the sum of proper divisors.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 8, 10, 11, 8, 13, 14, 15, 9, 17, 15, 19, 14, 21, 22, 23, 12, 24, 26, 23, 20, 29, 30, 31, 17, 33, 34, 35, 17, 37, 38, 39, 22, 41, 42, 43, 32, 39, 46, 47, 20, 48, 47, 51, 38, 53, 42, 55, 32, 57, 58, 59, 36, 61, 62, 55, 33, 65, 66, 67, 50, 69, 70, 71, 21, 73, 74, 71, 56, 77, 78, 79, 38, 68, 82
Offset: 1

Views

Author

Antti Karttunen, May 28 2021

Keywords

Comments

First negative term occurs as a(1440) = -18.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(e+1) - 1)/(p-1); a[1] = 1; a[n_] := Module[{fct = FactorInteger[n]}, n * (Times @@ (1 + 1/fct[[;; , 1]]) + 1) - Times @@ f @@@ fct]; Array[a, 100] (* Amiram Eldar, Dec 08 2023 *)
  • PARI
    A001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d));
    A344705(n) = ((n + A001615(n)) - sigma(n));

Formula

a(n) = A001615(n) - A001065(n) = n - A244963(n) = n + A001615(n) - sigma(n).
a(n) = A033879(n) + A306927(n).
a(n) = n + A344753(n) - 2*A001065(n).
Sum_{k=1..n} a(k) = c * n^2 / 2 + O(n*log(n)), where c = 15/Pi^2 + 1 - Pi^2/6 = 0.874883... . - Amiram Eldar, Dec 08 2023

A345005 Odd numbers whose arithmetic derivative (A003415) is equal to Dedekind psi (A001615) applied to the same number.

Original entry on oeis.org

81, 3375, 15625, 231525, 713097, 1058841, 1500625, 4348377, 5764801, 16891497, 163555875, 209548647, 239010993, 239160735, 254205875, 267651475, 405189675, 451699875, 958403475, 1050284375, 1213014231, 1501534375, 1695809375, 1809323971, 1942143291
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Comments

Conjectured to be also the odd numbers k for which A344998(k) = A344999(k).

Crossrefs

Odd terms in A301939, but see also A345003.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA345005(n) = ((n%2)&&(A003415(n)==A001615(n)));

A346470 a(n) = psi(A276086(n)), where psi is Dedekind psi function A001615, and A276086 is the prime product form of primorial base expansion of n.

Original entry on oeis.org

1, 3, 4, 12, 12, 36, 6, 18, 24, 72, 72, 216, 30, 90, 120, 360, 360, 1080, 150, 450, 600, 1800, 1800, 5400, 750, 2250, 3000, 9000, 9000, 27000, 8, 24, 32, 96, 96, 288, 48, 144, 192, 576, 576, 1728, 240, 720, 960, 2880, 2880, 8640, 1200, 3600, 4800, 14400, 14400, 43200, 6000, 18000, 24000, 72000, 72000, 216000, 56, 168, 224, 672
Offset: 0

Views

Author

Antti Karttunen, Jul 21 2021

Keywords

Crossrefs

Cf. A001615.
Other number-theoretical functions similarly applied to A276086: A267263 (omega), A276150 (bigomega), A324650 (phi), A324653 (sigma), A324655 (tau), A327860 (arithmetic derivative).
Cf. also A346471, A346475.

Programs

  • PARI
    A346470(n) = { my(m=1, p=2, e); while(n, e = (n%p); if(e, m *= (p+1)*(p^(e-1))); n = n\p; p = nextprime(1+p)); (m); };

Formula

a(n) = A001615(A276086(n)).

A347135 a(n) = Sum_{d|n} A001615(n/d) * A069359(d).

Original entry on oeis.org

0, 1, 1, 5, 1, 12, 1, 16, 7, 16, 1, 51, 1, 20, 18, 44, 1, 68, 1, 71, 22, 28, 1, 156, 11, 32, 33, 91, 1, 167, 1, 112, 30, 40, 26, 277, 1, 44, 34, 220, 1, 215, 1, 131, 110, 52, 1, 420, 15, 140, 42, 151, 1, 300, 34, 284, 46, 64, 1, 673, 1, 68, 138, 272, 38, 311, 1, 191, 54, 295, 1, 836, 1, 80, 162, 211, 38, 359, 1, 596
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Comments

Dirichlet convolution of A001615 (Dedekind psi function) with A069359.
Dirichlet convolution of A001221 (omega, number of distinct prime factors of n) with A322577.

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n,PrimeNu[n/#]*Sum[DirichletConvolve[j,MoebiusMu[j]^2,j,#/d] EulerPhi[d],{d,Divisors[#]}]&],{n,80}] (* Giorgos Kalogeropoulos, Oct 28 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A069359(n) = (n*sumdiv(n, d, isprime(d)/d)); \\ From A069359
    A347135(n) = sumdiv(n,d,A001615(n/d)*A069359(d));

Formula

a(n) = Sum_{d|n} A001615(n/d) * A069359(d).
a(n) = Sum_{d|n} A001221(n/d) * A322577(d).

A187778 Numbers k dividing psi(k), where psi is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 6, 12, 18, 24, 36, 48, 54, 72, 96, 108, 144, 162, 192, 216, 288, 324, 384, 432, 486, 576, 648, 768, 864, 972, 1152, 1296, 1458, 1536, 1728, 1944, 2304, 2592, 2916, 3072, 3456, 3888, 4374, 4608, 5184, 5832, 6144, 6912, 7776, 8748, 9216, 10368, 11664, 12288, 13122, 13824, 15552, 17496, 18432, 20736, 23328
Offset: 1

Views

Author

Keywords

Comments

This sequence is closed under multiplication.
Also 1 and the numbers where psi(n)/n = 2, or n/phi(n)=3, or psi(n)/phi(n)=6.
Also 1 and the numbers of the form 2^i*3^j with i, j >= 1 (A033845).
If M(n) is the n X n matrix whose elements m(i,j) = 2^i*3^j, with i, j >= 1, then det(M(n))=0.
Numbers n such that Product_{i=1..q} (1 + 1/d(i)) is an integer where q is the number of the distinct prime divisors d(i) of n. - Michel Lagneau, Jun 17 2016

Examples

			psi(48) = 96 and 96/48 = 2 so 48 is in this sequence.
		

References

  • S. Ramanujan, Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, p. xxiv.

Crossrefs

Programs

  • Magma
    [6*n: n in [1..3000] | PrimeDivisors(n) subset [2, 3]]; // Vincenzo Librandi, Jan 11 2019
  • Mathematica
    Select[Range[10^4],#/EulerPhi[#]==3 || #==1&]
    Join[{1}, 6 Select[Range@4000, Last@Map[First, FactorInteger@#]<=3 &]] (* Vincenzo Librandi, Jan 11 2019 *)
  • PARI
    dedekindpsi(n) = if( n<1, 0, direuler( p=2, n, (1 + X) / (1 - p*X)) [n]);
    k=0; n=0; while(k<10000,n++; if( dedekindpsi(n) % n== 0, k++; print1(n, ", ")));
    

Formula

For n > 1, a(n) = 6 * A003586(n).
Sum_{n>0} 1/a(n)^k = 1 + Sum_{i>0} Sum_{j>0} 1/(2^i * 3^j)^k = 1 + 1/((2^k-1)*(3^k-1)).

A240112 Numbers for which the values of the Dedekind psi function (A001615) are greater than the values of the infinitary Dedekind psi function (A049417).

Original entry on oeis.org

4, 9, 12, 16, 18, 20, 25, 28, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 75, 76, 80, 81, 84, 90, 92, 98, 99, 100, 108, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198, 204, 207
Offset: 1

Views

Author

Vladimir Shevelev, Apr 01 2014

Keywords

Comments

The first term of A072587 that is not in this sequence is 72.
On the set of the nonsquarefree numbers (A013929) it is complement to A240111.
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are 2, 29, 284, 2845, 28527, 285352, 2853422, 28534455, 285344362, 2853443344, ... . Apparently, the asymptotic density of this sequence exists and equals 0.2853443... . - Amiram Eldar, Feb 13 2025

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; f2[p_, e_] := (p+1)*p^(e-1); q[1] = False; q[n_] := Module[{fct = FactorInteger[n]}, Times @@ f2 @@@ fct > Times @@ f1 @@@ fct]; Select[Range[250], q] (* Amiram Eldar, Feb 13 2025 *)
  • PARI
    isok(k) = {my(f = factor(k), b); prod(i=1, #f~, (f[i, 1]+1)*f[i, 1]^(f[i, 2]-1)) > prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], 1+f[i, 1]^(2^(#b-k)), 1)));} \\ Amiram Eldar, Feb 13 2025

Extensions

More terms from Peter J. C. Moses, Apr 02 2014

A308462 Expansion of e.g.f. exp(Sum_{k>=1} psi(k)*x^k/k), where psi() is the Dedekind psi function (A001615).

Original entry on oeis.org

1, 1, 4, 18, 114, 810, 7560, 71820, 822780, 10086300, 139532400, 2035618200, 33149655000, 562448086200, 10416443637600, 202624824402000, 4207527414090000, 91475485119018000, 2114681171586984000, 50821588411117524000, 1289125346347418580000
Offset: 0

Views

Author

Ilya Gutkovskiy, May 28 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Exp[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[Product[1 + Boole[PrimeQ[d]]/d, {d, Divisors[k]}] k! Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 20}]

Formula

log(a(n)/n!) ~ 2*sqrt(15*n)/Pi. - Vaclav Kotesovec, Oct 31 2024

A323327 Numbers that start an unbounded aliquot-like sequence based on Dedekind psi function (A001615).

Original entry on oeis.org

318, 330, 498, 510, 534, 546, 636, 660, 786, 798, 942, 954, 978, 990, 996, 1020, 1068, 1092, 1110, 1122, 1254, 1272, 1320, 1398, 1410, 1470, 1494, 1506, 1518, 1530, 1572, 1596, 1602, 1614, 1626, 1638, 1734, 1884, 1908, 1938, 1950, 1956, 1980, 1992, 2040, 2046
Offset: 1

Views

Author

Amiram Eldar, Jan 11 2019

Keywords

Comments

Let t(k) = psi(k) - k = A001615(k) - k be the sum of aliquot divisors d of k, such that k/d is squarefree. Penney & Pomerance proposed a problem to show that the aliquot-like sequence related to this function, i.e., the trajectory of an integer k under the repeated application of the map k -> t(k), can be unbounded. Since t(m^j * k) = m^j * t(k) if m|k, then if in the sequence a_0 = k, a_1 = t(k), a_2 = t(t(k)), ... there is a term a_{i1} = m^j * a_0 such that m|k and j > 0 then a_{i+i1} = m^j * a_i for all i and thus the sequence is unbounded.

Examples

			318 is in the sequence since t(318) = psi(318) - 318 = 330, t(330) = 534, etc., and this repeated mapping yields an unbounded sequence.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, Amer. Math. Soc., 2009, page 71, entry 318.

Crossrefs

Programs

  • Mathematica
    t[1]=0; t[n_] := (Times@@(1+1/Transpose[FactorInteger[n]][[1]])-1)*n; rt[n_] := Module[{f=FactorInteger[n]}, e=GCD@@f[[;;,2]]; Surd[n,e]]; divrootQ[n_, m_] := Divisible[n, rt[m]]; divQ[s_, n_] := If[n==0, 0, If[MemberQ[s, n], 1, If[ Length[Select[s, Divisible[n,#] && divrootQ[#, n/#] &]] > 0, 2, 3]]]; seqQ[n_] := Module[{n1=n}, s={}; While[divQ[s, n1] ==3, AppendTo[s, n1]; n1=t[n1]]; divQ[s, n1]] == 2; Select[Range[10000], seqQ]

A342916 a(n) = (1+n) / gcd(1+n, A001615(n)), where A001615 is Dedekind psi, n * Product_{p|n, p prime} (1 + 1/p).

Original entry on oeis.org

2, 1, 1, 5, 1, 7, 1, 3, 5, 11, 1, 13, 1, 5, 2, 17, 1, 19, 1, 7, 11, 23, 1, 25, 13, 9, 7, 29, 1, 31, 1, 11, 17, 35, 3, 37, 1, 13, 5, 41, 1, 43, 1, 5, 23, 47, 1, 49, 25, 17, 13, 53, 1, 55, 7, 19, 29, 59, 1, 61, 1, 21, 2, 65, 11, 67, 1, 23, 35, 71, 1, 73, 1, 25, 19, 77, 13, 79, 1, 9, 41, 83, 1, 85, 43, 29, 11, 89, 1, 91, 23, 31
Offset: 1

Views

Author

Antti Karttunen, Mar 29 2021

Keywords

Comments

It is conjectured that a(n) = 1 only when n is a prime, A000040. See Thomas Ordowski's May 21 2017 problem in A001615.

Crossrefs

Cf. also A160596.
After n=1 differs from A342918 for the first time at n=44, where a(44) = 5, while A342918(44) = 15.

Programs

  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A342916(n) = ((1+n)/gcd(1+n,A001615(n)));

Formula

a(n) = (1+n) / A342915(n) = (1+n) / gcd(1+n, A001615(n)).

Extensions

Incorrect A-number in the formula corrected by Antti Karttunen, May 31 2021

A387415 Numbers k such that the odd part of (1+k) divides (1 + odd part of A001615(k)), where A001615 is Dedekind's psi-function.

Original entry on oeis.org

1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 2431, 4095, 8191, 14335, 16383, 27135, 32767, 44031, 57855, 65535, 75775, 131071, 204799, 262143, 376831, 524287, 667135, 923647, 1048575, 1441791, 1632255, 2056191, 2097151, 2315775, 2744319, 4194303, 6768639, 6815743, 8388607, 8781823, 16777215, 19922943, 24068095
Offset: 1

Views

Author

Antti Karttunen, Sep 01 2025

Keywords

Comments

Like in many sequences of this type, the criterion seems to strongly select for numbers with a long tail of trailing 1-bits. The initial 1 is probably the only term that is not in A004767.

Crossrefs

Cf. A000225 (subsequence), A000265, A001615.
For similar sequences, see A336700, A387410, A387418, A387419.

Programs

Previous Showing 31-40 of 326 results. Next