cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A054728 a(n) is the smallest level N such that genus of modular curve X_0(N) is n (or -1 if no such curve exists).

Original entry on oeis.org

1, 11, 22, 30, 38, 42, 58, 60, 74, 66, 86, 78, 106, 105, 118, 102, 134, 114, 223, 132, 166, 138, 188, 156, 202, 168, 214, 174, 236, 186, 359, 204, 262, 230, 278, 222, 298, 240, 314, 246, 326, 210, 346, 270, 358, 282, 557, 306, 394, 312, 412, 318
Offset: 0

Views

Author

Janos A. Csirik, Apr 21 2000

Keywords

Comments

a(150) = -1, a(n) > 0 for 0<=n<=149.
a(9999988) = 119999861 is the largest value in the first 1+10^7 terms of the sequence. - Gheorghe Coserea, May 24 2016

References

  • J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000.

Crossrefs

Programs

  • Mathematica
    a1617[n_] := If[n<1, 0, 1+Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], ?IntegerQ]/3 - Count[(#^2+1)/n& /@ Range[n], ?IntegerQ]/4];
    seq[n_] := Module[{inv, bnd}, inv = Table[-1, {n+1}]; bnd = 12n + 18 Floor[Sqrt[n]] + 100; For[k = 1, k <= bnd, k++, g = a1617[k]; If[g <= n && inv[[g+1]] == -1, inv[[g+1]] = k]]; inv];
    seq[51] (* Jean-François Alcover, Nov 20 2018, after Gheorghe Coserea and Michael Somos in A001617 *)
  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k,1]+1)),
         h = prod(k=1, fsz, f[k,1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k,1]^(f[k,2]\2) + f[k,1]^((f[k,2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    seq(n) = {
      my(inv = vector(n+1,g,-1), bnd = 12*n + 18*sqrtint(n) + 100, g);
      for (k = 1, bnd, g = A001617(k);
           if (g <= n && inv[g+1] == -1, inv[g+1] = k));
      return(inv);
    };
    seq(51)  \\ Gheorghe Coserea, May 21 2016

Formula

A001617(a(A001617(n))) = A001617(n) and a(A054729(n)) = -1 for all n>=1. - Gheorghe Coserea, May 22 2016

A091404 Numbers n such that genus of group Gamma_0(n) is 2.

Original entry on oeis.org

22, 23, 26, 28, 29, 31, 37, 50
Offset: 1

Views

Author

N. J. A. Sloane, Mar 02 2004

Keywords

Comments

I assume it is known that there are no further terms? A reference for this would be nice.

References

  • B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 103.
  • G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton, 1971, see Prop. 1.40 and 1.43.

Crossrefs

Programs

  • Mathematica
    a89[n_] := a89[n] = Product[{p, e} = pe; Which[p < 3 && e == 1, 1, p == 2 && e > 1, 0, Mod[p, 4] == 1, 2, Mod[p, 4] == 3, 0, True, a89[p^e]], {pe, FactorInteger[n]}];
    a86[n_] := a86[n] = Product[{p, e} = pe; Which[p == 1 || p == 3 && e == 1, 1, p == 3 && e > 1, 0, Mod[p, 3] == 1, 2, Mod[p, 3] == 2, 0, True, a86[p^e]], {pe, FactorInteger[n]}];
    a1615[n_] := n Sum[MoebiusMu[d]^2/d, {d, Divisors[n]}];
    a1616[n_] := Sum[EulerPhi[GCD[d, n/d]], {d, Divisors[n]}];
    a1617[n_] := 1 + a1615[n]/12 - a89[n]/4 - a86[n]/3 - a1616[n]/2;
    Position[Array[a1617, 100], 2] // Flatten (* Jean-François Alcover, Oct 19 2018 *)

Formula

Numbers n such that A001617(n) = 2.

A332713 a(n) = Sum_{d|n} phi(d/gcd(d, n/d)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 7, 8, 10, 11, 12, 13, 14, 15, 13, 17, 16, 19, 20, 21, 22, 23, 21, 22, 26, 22, 28, 29, 30, 31, 24, 33, 34, 35, 32, 37, 38, 39, 35, 41, 42, 43, 44, 40, 46, 47, 39, 44, 44, 51, 52, 53, 44, 55, 49, 57, 58, 59, 60, 61, 62, 56, 46, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Ilya Gutkovskiy, Feb 20 2020

Keywords

Crossrefs

Cf. A000010, A001616, A010052, A046790 (numbers n such that a(n) < n), A055653, A061884, A078779 (fixed points), A332619, A332686, A332712.

Programs

  • Mathematica
    Table[Sum[EulerPhi[d/GCD[d, n/d]], {d, Divisors[n]}], {n, 1, 70}]
    A055653[n_] := Sum[Boole[GCD[d, n/d] == 1] EulerPhi[d], {d, Divisors[n]}]; a[n_] := Sum[Boole[IntegerQ[(n/d)^(1/2)]] A055653[d], {d, Divisors[n]}]; Table[a[n], {n, 1, 70}]
  • PARI
    a(n) = sumdiv(n, d, eulerphi(d/gcd(d, n/d))); \\ Michel Marcus, Feb 20 2020

Formula

Dirichlet g.f.: zeta(s) * zeta(2*s) * zeta(s - 1) * Product_{p prime} (1 - p^(-s) + p^(-2*s) - p^(1 - 2*s)).
a(n) = Sum_{d|n} phi(lcm(d, n/d)/d).
a(n) = Sum_{d|n} A010052(n/d) * A055653(d).
Sum_{k=1..n} a(k) ~ c * Pi^6 * n^2 / 1080, where c = A330523 = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = 0.5358961538283379998085... - Vaclav Kotesovec, Feb 22 2020
From Richard L. Ollerton, May 10 2021: (Start)
a(n) = Sum_{k=1..n} phi(gcd(n,k)/gcd(gcd(n,k),n/gcd(n,k)))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} phi(n/gcd(n,k)/gcd(gcd(n,k),n/gcd(n,k)))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} phi(lcm(gcd(n,k),n/gcd(n,k))/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} phi(lcm(gcd(n,k),n/gcd(n,k))*gcd(n,k)/n)/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} A010052(gcd(n,k))*A055653(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = Sum_{k=1..n} A010052(n/gcd(n,k))*A055653(gcd(n,k))/phi(n/gcd(n,k)). (End)

A124316 a(n) = Sum_{d|n} sigma(gcd(d,n/d)), where sigma is the sum of divisors function, A000203.

Original entry on oeis.org

1, 2, 2, 5, 2, 4, 2, 8, 6, 4, 2, 10, 2, 4, 4, 15, 2, 12, 2, 10, 4, 4, 2, 16, 8, 4, 10, 10, 2, 8, 2, 22, 4, 4, 4, 30, 2, 4, 4, 16, 2, 8, 2, 10, 12, 4, 2, 30, 10, 16, 4, 10, 2, 20, 4, 16, 4, 4, 2, 20, 2, 4, 12, 37, 4, 8, 2, 10, 4, 8, 2, 48, 2, 4, 16, 10, 4, 8, 2, 30, 23, 4, 2, 20, 4, 4, 4, 16, 2, 24
Offset: 1

Views

Author

Robert G. Wilson v, Sep 30 2006

Keywords

Comments

Apparently multiplicative and the inverse Mobius transform of A069290. - R. J. Mathar, Feb 07 2011

Crossrefs

Programs

  • Maple
    A124316 := proc(n) local a,d;
      a := 0 ;
      for d in numtheory[divisors](n) do
         igcd(d,n/d) ;
         a := a+numtheory[sigma](%) ;
       end do:
       a;
    end proc: # R. J. Mathar, Apr 14 2011
  • Mathematica
    Table[Plus @@ Map[DivisorSigma[1, GCD[ #, n/# ]] &, Divisors@n], {n, 90}]
    f[p_, e_] := (If[OddQ[e], 2*p^((e+3)/2), p^(e/2 + 1)*(p+1)] - (e+3)*p + e + 1)/(p-1)^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 28 2024 *)
  • PARI
    a(n) = sumdiv(n, d, sigma(gcd(d, n/d))); \\ Michel Marcus, Feb 13 2016
    
  • Python
    from sympy import divisors, divisor_sigma, gcd
    def a(n): return sum([divisor_sigma(gcd(d, n/d)) for d in divisors(n)]) # Indranil Ghosh, May 25 2017

Formula

From Amiram Eldar, Mar 28 2024: (Start)
Multiplicative with a(p^e) = (p^(e/2 + 1)*(p+1) - (e+3)*p + e + 1)/(p-1)^2, if e is even, and (2*p^((e+3)/2) - (e+3)*p + e + 1)/(p-1)^2 if e is odd.
Dirichlet g.f.: zeta(s)^2 * zeta(2*s-1).
Sum_{k=1..n} a(k) = (log(n)^2/4 + (2*gamma - 1/2)*log(n) + 5*gamma^2/2 - 2*gamma - 3*gamma_1 + 1/2) * n + O(n^(2/3)*log(n)^(16/9)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633) (Krätzel et al., 2012). (End)

A054730 Odd n such that genus of modular curve X_0(N) is never equal to n.

Original entry on oeis.org

49267, 74135, 94091, 96463, 102727, 107643, 118639, 138483, 145125, 181703, 182675, 208523, 221943, 237387, 240735, 245263, 255783, 267765, 269627, 272583, 277943, 280647, 283887, 286815, 309663, 313447, 322435, 326355, 336675, 347823, 352719
Offset: 1

Views

Author

Janos A. Csirik, Apr 21 2000

Keywords

Comments

There are 4329 odd integers in the sequence less than 10^7. - Gheorghe Coserea, May 23 2016

References

  • J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000.

Crossrefs

Programs

  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    scan(n) = {
      my(inv = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g);
      for (k = 1, bnd, g = A001617(k);
           if (g <= n && inv[g+1] == -1, inv[g+1] = k));
      select(x->(x%2==1), apply(x->(x-1), Vec(select(x->x==-1, inv, 1))));
    };
    scan(400*1000)

Extensions

More terms from Gheorghe Coserea, May 23 2016
Offset corrected by Gheorghe Coserea, May 23 2016

A111248 Dimension of the space of weight 2 modular forms for Gamma_0(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 3, 3, 2, 5, 1, 4, 4, 5, 2, 7, 2, 6, 4, 5, 3, 8, 5, 5, 6, 7, 3, 10, 3, 8, 6, 6, 6, 12, 3, 7, 6, 10, 4, 12, 4, 9, 10, 8, 5, 14, 8, 13, 8, 10, 5, 15, 8, 12, 8, 9, 6, 18, 5, 10, 12, 14, 8, 16, 6, 12, 10, 16, 7, 20, 6, 11, 16, 13, 10, 18, 7, 18, 15, 12, 8, 22, 10, 13, 12, 16, 8, 26
Offset: 1

Views

Author

Steven Finch, Oct 31 2005

Keywords

Comments

Equivalently, this is the dimension of the space of level n, weight 2 modular forms. - Steven Finch, Apr 03 2009

Crossrefs

Cf. A001616, A001617. [Steven Finch, Apr 03 2009]
Cf. A006571.

Programs

  • Magma
    [ Dimension(ModularForms(Gamma0(n), 2)) : n in [1..100] ]; // Klaus Brockhaus, Mar 10 2011

Formula

a(n) = A001617(n) + A001616(n) - 1. - Steven Finch, Apr 03 2009

Extensions

More terms from Steven Finch, Apr 03 2009

A273445 a(n) is the number of solutions of the equation n = A001617(k).

Original entry on oeis.org

15, 12, 8, 11, 7, 14, 4, 13, 7, 12, 4, 15, 4, 9, 6, 10, 5, 16, 2, 20, 3, 14, 7, 11, 2, 13, 5, 11, 3, 14, 3, 9, 6, 13, 3, 17, 3, 14, 4, 10, 4, 20, 3, 15, 3, 12, 1, 15, 2, 20, 4, 11, 3, 13, 3, 16, 3, 12, 3, 15, 3, 12, 5, 9, 4, 15, 2, 14, 5, 17, 3, 13
Offset: 0

Views

Author

Gheorghe Coserea, May 22 2016

Keywords

Comments

The zeros of the sequence are given by A054729. The first five zeros of the sequence have indexes 150, 180, 210, 286, 304.

Examples

			For n = 0 the a(0) = 15 solutions are:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25 (A091401).
For n = 1 the a(1) = 12 solutions are:
11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49 (A091403).
For n = 2 the a(2) = 8 solutions are:
22, 23, 26, 28, 29, 31, 37, 50 (A091404).
		

Crossrefs

Programs

  • Mathematica
    (* b = A001617 *) nmax = 71;
    b[n_] := b[n] = If[n < 1, 0, 1 + Sum[ MoebiusMu[ d]^2 n/d / 12 - EulerPhi[ GCD[ d, n/d]] / 2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], ?IntegerQ]/3 -Count[(#^2 + 1)/n& /@ Range[n], ?IntegerQ]/4];
    Clear[f];
    f[m_] := f[m] = Module[{}, A001617 = Array[b, m]; a[n_] := Count[A001617, n]; Table[a[n], {n, 0, nmax}]];
    f[m = nmax]; f[m = m + nmax];
    While[Print["m = ", m]; f[m] != f[m - nmax], m = m + nmax];
    A273445 = f[m] (* Jean-François Alcover, Dec 16 2018, using Michael Somos' code for A001617 *)
  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k,1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k,1]+1)),
         h = prod(k=1, fsz, f[k,1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k,1]^(f[k,2]\2) + f[k,1]^((f[k,2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    seq(n) = {
      my(a = vector(n+1,g,0), bnd = 12*n + 18*sqrtint(n) + 100, g);
      for (k = 1, bnd, g = A001617(k);
           if (g <= n, a[g+1]++));
      return(a);
    };
    seq(72)

Formula

a(n) = card {k, n = A001617(k)}.

A372866 a(n) is the sum, over all positive integers x, y such that x*y <= n, of phi(gcd(x,y)).

Original entry on oeis.org

1, 3, 5, 8, 10, 14, 16, 20, 24, 28, 30, 36, 38, 42, 46, 52, 54, 62, 64, 70, 74, 78, 80, 88, 94, 98, 104, 110, 112, 120, 122, 130, 134, 138, 142, 154, 156, 160, 164, 172, 174, 182, 184, 190, 198, 202, 204, 216, 224, 236, 240, 246, 248, 260, 264, 272, 276, 280
Offset: 1

Views

Author

Jeffrey Shallit, Jul 04 2024

Keywords

Comments

A number-theoretic sum involving the Euler phi function and gcd's.
Theorem 1.1 of Kiuchi and Tsuruta (2024) gives an estimate for a(n).

Examples

			For n = 3, the (a,b) pairs that appear in the sum are (1,1), (1,2), (1,3), (2,1), (3,1); the gcd of all is 1, and the sum of the phi-function at these 5 values of 1 is 5.
		

Crossrefs

Partial sums of A001616.
Cf. A000010.

Programs

  • Maple
    a:= proc(n) option remember; uses numtheory; `if`(n<1, 0,
          a(n-1)+add(phi(igcd(d, n/d)), d=divisors(n)))
        end:
    seq(a(n), n=1..58);  # Alois P. Heinz, Jul 04 2024
  • Mathematica
    a[n_] := a[n] = DivisorSum[n, EulerPhi[GCD[#, n/#]] &] + a[n - 1]; a[1] = 1; Array[a, 120] (* Michael De Vlieger, Jul 04 2024 *)
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, eulerphi(gcd(d, k/d)))); \\ Michel Marcus, Jul 04 2024
  • Python
    from math import gcd
    from functools import cache
    from sympy import divisors, totient as phi
    @cache
    def a(n):
        if n == 1: return 1
        return a(n-1) + sum(phi(gcd(a, (b:=n//a))) for a in divisors(n))
    print([a(n) for n in range(1, 61)]) # Michael S. Branicky, Jul 04 2024
    
  • Python
    from math import prod
    from itertools import count, islice
    from sympy import factorint
    def A372866_gen(): # generator of terms
        c = 0
        for n in count(1):
            c += prod(p**(e>>1)+p**(e-1>>1) for p, e in factorint(n).items())
            yield c
    A372866_list = list(islice(A372866_gen(),20)) # Chai Wah Wu, Jul 05 2024
    

A130107 Möbius transform of A063659.

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 3, 5, 4, 10, 2, 12, 6, 8, 6, 16, 5, 18, 4, 12, 10, 22, 6, 19, 12, 16, 6, 28, 8, 30, 12, 20, 16, 24, 5, 36, 18, 24, 12, 40, 12, 42, 10, 20, 22, 46, 12, 41, 19, 32, 12, 52, 16, 40, 18, 36, 28, 58, 8, 60, 30, 30, 24, 48, 20, 66, 16, 44, 24
Offset: 1

Views

Author

Gary W. Adamson, May 07 2007

Keywords

Comments

Double inverse Möbius transform of A130107 = A001615: (1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, ...).

Examples

			G.f. = x + x^2 + 2*x^3 + x^4 + 4*x^5 + 2*x^6 + 6*x^7 + 3*x^8 + 5*x^9 + ...
		

Crossrefs

Programs

  • Maple
    with(numtheory): A130107 := proc(n) local dp, mtdp, d, p;
    dp := n -> n*mul((1+1/p), p=factorset(n));
    mtdp := n -> add(mobius(n/d)*dp(d), d=divisors(n));
    add(mobius(n/d)*mtdp(d), d=divisors(n)) end:
    seq(A130107(n), n=1..76); # Peter Luschny, Apr 06 2014
  • Mathematica
    JordanTotient[n_,k_:1]:=DivisorSum[n,#^k*MoebiusMu[n/#]&]/;(n>0)&&IntegerQ[n];
    DedekindPsi[n_]:=JordanTotient[n,2]/EulerPhi[n];
    A063659[n_]:=DivisorSum[n,MoebiusMu[n/#]*DedekindPsi[#]&];
    A130107[n_]:=DivisorSum[n,MoebiusMu[n/#]*A063659[#]&]:
    Table[A130107[n],{n,1,30}]
    (* Enrique Pérez Herrero, Apr 03 2014 *)
    a[ n_] := If[ n < 2, Boole[n == 1], Times @@ (Which[ #2 == 1, # - 1, #2 == 2, #^2 - # - 1, True, #^(#2 - 3) (#^2 - 1) (# - 1)] &) @@@ FactorInteger[n]]; (* Michael Somos, Jun 17 2015 *)
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if( e==1, p - 1, e==2, p^2 - p - 1, p^(e-3) * (p^2 - 1) * (p-1))))}; /* Michael Somos, Jun 17 2015 */

Formula

A054525 * A063659, (1, 2, 3, 3, 5, 6, 7, 6, 8, 10, ...).
Multiplicative with a(p^e) = p-1 if e=1, a(p^e) = p^2-p-1 if e=2, a(p^e) = p^(e-3)*(p+1)*(p-1)^2. - Enrique Pérez Herrero, Apr 03 2014
Dirichlet g.f.: zeta(s-1) / (zeta(s) * zeta(2s)). - Álvar Ibeas, Mar 07 2015
Sum_{k=1..n} a(k) ~ 270*n^2 / Pi^6. - Vaclav Kotesovec, Jan 11 2019

Extensions

More terms from Enrique Pérez Herrero, Apr 03 2014

A159633 Dimension of Eisenstein subspace of the space of modular forms of weight k/2, level 4*n and trivial character, where k>=5 is odd.

Original entry on oeis.org

2, 3, 4, 6, 4, 6, 4, 8, 8, 6, 4, 12, 4, 6, 8, 12, 4, 12, 4, 12, 8, 6, 4, 16, 12, 6, 12, 12, 4, 12, 4, 16, 8, 6, 8, 24, 4, 6, 8, 16, 4, 12, 4, 12, 16, 6, 4, 24, 16, 18, 8, 12, 4, 18, 8, 16, 8, 6, 4, 24, 4, 6, 16, 24, 8, 12, 4, 12, 8, 12, 4, 32, 4, 6, 24, 12, 8, 12, 4, 24, 24, 6, 4, 24, 8, 6, 8, 16, 4
Offset: 1

Views

Author

Steven Finch, Apr 17 2009

Keywords

Comments

Denote dim{M_k(Gamma_0(N))} by m(k,N) and dim{S_k(Gamma_0(N))} by s(k,N).
We have:
m(3/2,N)-s(3/2,N)+m(1/2,N)-s(1/2,N) =
m(5/2,N)-s(5/2,N) = m(7/2,N)-s(7/2,N) =
m(9/2,N)-s(9/2,N) = m(11/2,N)-s(11/2,N) = ...
m(k/2,N)-s(k/2,N) = ...
where N is any positive multiple of 4 and k>=5 is odd.
a(n) = A159635(n) - A159636(n). - Steven Finch, Apr 22 2009
Conjecture: a(n) = 2*chi(n) - if(mod(n+2,4)=0, chi(n)/2, 0) with chi(n) = A001616(n) = Sum_{d|n} phi(gcd(d,n/d)); checked up to n=1024. - Wouter Meeussen, Apr 02 2014

References

  • K. Ono, The Web of Modularity: Arithmetic of Coefficients of Modular Forms and q-series. American Mathematical Society, 2004 (p. 16, theorem 1.56).

Crossrefs

Programs

  • Magma
    [[4*n,Dimension(HalfIntegralWeightForms(4*n,5/2))-Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,5/2)))] : n in [1..100]]; [[4*n,Dimension(HalfIntegralWeightForms(4*n,7/2))-Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,7/2)))] : n in [1..100]]; [[4*n,Dimension(HalfIntegralWeightForms(4*n,3/2))-Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,3/2)))+Dimension(HalfIntegralWeightForms(4*n,1/2))-Dimension(CuspidalSubspace(HalfIntegralWeightForms(4*n,1/2)))] : n in [1..100]];
  • Mathematica
    (* see link, conjecture proved by P. Humphries *)
    chi[n_Integer]:=Sum[EulerPhi[GCD[d,n/d]],{d,Divisors[n]}];
    2 chi[#] - If[Mod[# + 2, 4] == 0, chi[#]/2, 0] & /@ Range[89]
    (* Wouter Meeussen, Apr 06 2014 *)
Previous Showing 11-20 of 26 results. Next