cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A152881 Positions of those 1's that are followed by a 0, summed over all Fibonacci binary words of length n. A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

0, 1, 5, 15, 40, 95, 213, 455, 940, 1890, 3720, 7194, 13710, 25805, 48055, 88665, 162272, 294865, 532395, 955795, 1707110, 3034836, 5372400, 9473700, 16646700, 29155225, 50908793, 88644915, 153952120, 266726195, 461066385, 795320159
Offset: 1

Views

Author

Emeric Deutsch, Jan 04 2009

Keywords

Comments

a(n) = Sum(k*A119469(n+1,k),k>=0).
For n>1, a(n-1) is the n-th antidiagonal sum of A213777. [Clark Kimberling, Jun 21 2012]

Examples

			a(4)=15 because the Fibonacci binary words of length 4 are 1110, 1111, 1101, 1010, 1011, 0110, 0111, 0101 and the positions of those 1's that are followed by a 0 are 3, 2, 1, 3, 1, 3 and 2; their sum is 15.
		

Crossrefs

Cf. A119469.

Programs

  • Maple
    G := z^2*(1+2*z)/(1-z-z^2)^3: Gser := series(G, z = 0, 38): seq(coeff(Gser, z, n), n = 1 .. 34);

Formula

G.f.: z^2*(1+2z)/(1-z-z^2)^3.
a(n) = A001628(n-1) + 2*A001628(n-2), n>1, a(0)=0, a(1)=1. [Vladimir Kruchinin, Apr 26 2011]

A268400 Number of North-East lattice paths from (0,0) to (n,n) that bounce off the diagonal y = x to the right exactly twice.

Original entry on oeis.org

1, 5, 23, 99, 413, 1691, 6842, 27464, 109631, 435887, 1728018, 6835668, 26996393, 106486529, 419639903, 1652533719, 6504159137, 25589302163, 100646529977, 395775842389, 1556107102849, 6117771240251, 24050813530815, 94550689834203, 371715533473021, 1461430355605367, 5746128800657639, 22594839306797223
Offset: 3

Views

Author

Ran Pan, Feb 03 2016

Keywords

Comments

This sequence is related to paired pattern P_2 in Pan and Remmel's link.

Crossrefs

Programs

  • Mathematica
    Rest[Rest[Rest[CoefficientList[Series[-((-1 + Sqrt[1 - 4 x])^3 x (-1 + Sqrt[1-4 x] + 2 x))/(2 (1 - Sqrt[1 - 4 x] + (-5 + Sqrt[1 - 4 x]) x)^3), {x, 0, 40}], x]]]] (* Vincenzo Librandi, Feb 28 2016 *)
  • Maxima
    a(n):=((sum((m+2)*(sum((m^2+(3-2*k)*m+k^2-3*k+2)*binomial(m-k,k),k,0,m/2)) *binomial(2*n-m-5,n-m-3),m,1,n-3))+2*binomial(2*n-4,n-2))/(2*n-2); /* Vladimir Kruchinin, Feb 28 2016 */

Formula

G.f.: -((-1 + f(x))^3*x*(-1 + f(x) + 2*x))/(2*(1 - f(x) + (-5 + f(x))*x)^3), where f(x) = sqrt(1 - 4*x).
a(n) = ((Sum_{m=1..n-3}((m+2)*(Sum_{k=0..m/2}((m^2+(3-2*k)*m+k^2-3*k+2)*binomial(m-k,k)))*binomial(2*n-m-5,n-m-3)))+2*binomial(2*n-4,n-2))/(2*n-2), n>2. - Vladimir Kruchinin, Feb 28 2016
a(n) ~ 7*2^(2*n+2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 28 2016
D-finite with recurrence (n-1)*(9*n-56)*a(n) +(-31*n^2+203*n-16)*a(n-1) +(-193*n^2+1371*n-2138)*a(n-2) +3*(217*n^2-1497*n+2274)*a(n-3) +2*(41*n-94)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jul 24 2022

A057280 Coefficient triangle of polynomials (rising powers) related to Fibonacci convolutions. Companion triangle to A057995.

Original entry on oeis.org

2, 17, 5, 225, 120, 15, 4080, 3050, 700, 50, 94440, 89225, 28625, 3775, 175, 2666880, 3006000, 1208975, 223175, 19225, 625, 89016480, 115299900, 54824650, 12689800, 1537100, 93500, 2250, 3430929600, 4973077800, 2695596850, 737744125
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2000

Keywords

Comments

The row polynomials are q(k,x) := sum(a(k,m)*x^m,m=0..k), k=0,1,2,...
The k-th convolution of F0(n) := A000045(n+1), n >= 0, (Fibonacci numbers starting with F0(0)=1) with itself is Fk(n) := A037027(n+k,k) =( p(k-1,n)*(n+1)*F0(n+1) + q(k-1,n)*(n+2)*F0(n))/(k!*5^k), k=1,2,..., where the companion polynomials p(k,n) := sum(b(k,m)*n^m,m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A057995(k,m).

Examples

			k=2: F2(n)=((16+5*n)*(n+1)*F0(n+1)+(17+5*n)*(n+2)*F0(n))/50, cf. A001628.
		

Crossrefs

A057995 Coefficient triangle of polynomials (rising powers) related to Fibonacci convolutions. Companion triangle to A057280.

Original entry on oeis.org

1, 16, 5, 300, 160, 20, 6840, 4850, 1075, 75, 186120, 159650, 48175, 6100, 275, 5916240, 5846700, 2168650, 379700, 31550, 1000, 215717040, 238437900, 103057800, 22426825, 2605175, 153875, 3625, 8888140800, 10772348400
Offset: 0

Views

Author

Wolfdieter Lang, Sep 13 2000

Keywords

Comments

The row polynomials are p(k,x) := sum(a(k,m)*x^m,m=0..k), k=0,1,2,...
The k-th convolution of F0(n) := A000045(n+1) n >= 0, (Fibonacci starting with F0(0)=1) with itself is Fk(n) := A037027(n+k,k) = (p(k-1,n)*(n+1)*F0(n+1) + q(k-1,n)*(n+2)*F0(n))/(k!*5^k)), k=1,2,..., where the companion polynomials q(k,n) := sum(b(k,m)*n^m,m=0..k), k >= 0, are the row polynomials of triangle b(k,m)= A057280).

Examples

			k=2: F2(n)=((16+5*n)*(n+1)*F0(n+1)+(17+5*n)*(n+2)*F0(n))/50, cf. A001628.
		

Crossrefs

A067988 Row sums of triangle A067330; also of triangle A067418.

Original entry on oeis.org

1, 3, 10, 25, 60, 133, 284, 585, 1175, 2310, 4464, 8502, 15995, 29775, 54920, 100487, 182556, 329555, 591550, 1056405, 1877821, 3323868, 5860800, 10297500, 18033925, 31487643, 54824854, 95211205, 164948700, 285121105, 491804144, 846631137, 1454746355, 2495275650
Offset: 0

Views

Author

Wolfdieter Lang, Feb 15 2002

Keywords

Comments

a(n) is the sum of the positions of the 0's in all Fibonacci binary words of length n+1. A Fibonacci binary word is a binary word having no 00 subword. Example: a(3)=25 because the Fibonacci binary words of length 4 are 1110, 1111, 1101, 1010, 1011, 0110, 0111 and 0101, the positions of the 0's being 4, 3, 2, 4, 2, 1, 4, 1, 1 and 3 (their sum is 25). - Emeric Deutsch, Jan 04 2009

Crossrefs

Programs

  • Maple
    a:=n->sum(binomial(n-j,j)*n*j/2,j=0..n): seq(a(n), n=2..30); # Zerinvary Lajos, Oct 19 2006
  • Mathematica
    Table[((n+2)((3n+5)Fibonacci[n+1]+(n+1)Fibonacci[n]))/10,{n,0,30}] (* Harvey P. Dale, Feb 02 2020 *)

Formula

a(n) = (n+2)*((3*n+5)*F(n+1)+(n+1)*F(n))/10, with F(n) := A000045(n) (Fibonacci).
G.f.: (1+x^2)/(1-x-x^2)^3.
Sum_{j=0..n} binomial(n-j,j)*n*j/2. - Zerinvary Lajos, Oct 19 2006
E.g.f.: exp(x/2)*(5*(10 + 18*x + 7*x^2)*cosh(sqrt(5)*x/2) + sqrt(5)*(14 + 46*x + 15*x^2)*sinh(sqrt(5)*x/2))/50. - Stefano Spezia, Aug 30 2025

Extensions

a(29)-a(33) from Stefano Spezia, Aug 30 2025

A212338 Sequence of coefficients of x in marked mesh pattern generating function Q_{n,132}^(0,0,2,0)(x).

Original entry on oeis.org

2, 7, 21, 53, 124, 273, 577, 1181, 2358, 4614, 8880, 16854, 31612, 58691, 108003, 197203, 357596, 644463, 1155059, 2059897, 3656988, 6465660, 11388480, 19990140, 34976870, 61019071, 106160481, 184228193, 318948124, 550962717, 949781269, 1634103701, 2806342578
Offset: 3

Views

Author

N. J. A. Sloane, May 09 2012

Keywords

Comments

Apparently the number of Dyck n-paths that have n-2 peaks after changing each valley to a peak by the transformation DU -> UD. E.g., the Dyck 3-paths UUUDDD and UUDUDD have 1 peak after changing DU to UD so a(3) = 2. - David Scambler, Sep 03 2012

Crossrefs

Cf. Column 2 of A091533. Partial sums of A036681.

Programs

Formula

g.f. -x^3*(2+x) / (x^2+x-1)^3, i.e., a(n) = 2*A001628(n-3) + A001628(n-4). - R. J. Mathar, Jun 27 2012
a(n) = a(n-1) + a(n-2) + A067331(n-3). E.g., a(5) = 21 = 7 + 2 + 12. - David Scambler, Sep 03 2012

A245961 Number of 4-cycles in the Lucas cube Lambda(n).

Original entry on oeis.org

0, 0, 0, 0, 2, 5, 15, 35, 80, 171, 355, 715, 1410, 2730, 5208, 9810, 18280, 33745, 61785, 112309, 202840, 364245, 650705, 1157015, 2048532, 3612900, 6349200, 11121300, 19421150, 33820061, 58740915, 101777495, 175945280, 303516015, 522541903, 897942115
Offset: 0

Views

Author

Emeric Deutsch, Aug 10 2014

Keywords

Comments

The vertex set of the Lucas cube Lambda(n) is the set of all binary strings of length n without consecutive 1's and without a 1 in the first and the last bit. Two vertices of the Lucas cube are adjacent if their strings differ in exactly one bit.

Examples

			a(3)=0 because the Lucas cube Lambda(3) is the star-tree on 4 vertices.
		

Crossrefs

Cf. A364605 (number of 6-cycles).

Programs

  • Magma
    [((n-n^2)*Fibonacci(n) + (3*n^2 - 5*n)*Fibonacci(n-1))/10: n in [0..50]]; // Vincenzo Librandi, Aug 11 2014
    
  • Maple
    with(combinat): a := proc (n) options operator, arrow: (1/10)*n*(1-n)*fibonacci(n)+(1/10)*n*(3*n-5)*fibonacci(n-1) end proc: seq(a(n), n = 0 .. 35);
  • Mathematica
    Table[((n - n^2) Fibonacci[n] + (3 n^2 - 5 n) Fibonacci[n - 1])/10, {n, 0, 50}] (* Vincenzo Librandi, Aug 11 2014 *)
    LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 0, 2, 5, 15}, 20] (* Eric W. Weisstein, Jul 29 2023 *)
    CoefficientList[Series[(-2 + x) x^3/(-1 + x + x^2)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 29 2023 *)
  • PARI
    concat([0,0,0,0], Vec(x^4*(x-2)/(x^2+x-1)^3 + O(x^100))) \\ Colin Barker, Aug 13 2014

Formula

a(n) = ((n-n^2)*F(n) + (3n^2 - 5n)*F(n-1))/10, where F(n) = A000045(n), the Fibonacci numbers. Formula follows from Eq. (4) of the Klavzar 2005 reference and from the first formula on p. 511 of the Klavzar 2013 reference.
a(n) = Sum(L(i)*b(n-3-i), i=0..n-4), where L(i) = A000032(i) are the Lucas numbers and b(j) = A001629(j+1) is the number of edges in the Fibonacci cube Gamma(j) (see Prop. 9 of the Klavzar 2005 reference).
a(n) = 3*a(n-1)-5*a(n-3)+3*a(n-5)+a(n-6). G.f.: x^4*(x-2) / (x^2+x-1)^3. - Colin Barker, Aug 11 2014
a(n) = 2*A001628(n-4)-A001628(n-5). - R. J. Mathar, Jul 24 2022
G.f.: (-2+x)*x^4/(-1+x+x^2)^3. - Eric W. Weisstein, Jul 29 2023

A382406 Expansion of 1/(1 - x*(1 + x)^2)^3.

Original entry on oeis.org

1, 3, 12, 37, 111, 315, 864, 2307, 6027, 15471, 39132, 97755, 241606, 591636, 1437078, 3465748, 8305161, 19788957, 46910232, 110686101, 260064912, 608684490, 1419591546, 3300027546, 7648265728, 17676484410, 40747630332, 93704299336, 214999206831, 492262973433
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 40); f := 1/(1 - x*(1 + x)^2)^3; seq := [ Coefficient(f, n) : n in [0..30] ]; seq; // Vincenzo Librandi, Apr 10 2025
  • Mathematica
    Table[Sum[Binomial[k+2,2]*Binomial[2*k,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 10 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+2, 2)*binomial(2*k, n-k));
    

Formula

a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(2*k,n-k).
a(n) = 3*a(n-1) + 3*a(n-2) - 8*a(n-3) - 12*a(n-4) + 3*a(n-5) + 17*a(n-6) + 15*a(n-7) + 6*a(n-8) + a(n-9).
G.f.: 1/(1-x-2*x^2-x^3)^3. - Vincenzo Librandi, Apr 10 2025

A006479 From variance of Fibonacci search.

Original entry on oeis.org

0, 0, 0, 1, 5, 18, 52, 134, 318, 713, 1531, 3180, 6432, 12732, 24756, 47417, 89665, 167694, 310628, 570562, 1040226, 1883953, 3391799, 6073848, 10824096, 19204536, 33936456
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006478.

Programs

  • Maple
    A006479:=z**3*(1+z+z**2)/(z-1)/(z**2+z-1)**3; # conjectured by Simon Plouffe in his 1992 dissertation

Formula

(Conjecture equivalent to Plouffe g.f.): a(n) = -3 - 2*A001629(n+2) - 3*A001629(n+1) + 2*A001628(n-1) + A020701(n+1). - R. J. Mathar, Dec 06 2010

A057282 Coefficient triangle of polynomials (falling powers) related to Fibonacci convolutions. Companion triangle to A057281.

Original entry on oeis.org

2, 5, 17, 15, 120, 225, 50, 700, 3050, 4080, 175, 3775, 28625, 89225, 94440, 625, 19225, 223175, 1208975, 3006000, 2666880, 2250, 93500, 1537100, 12689800, 54824650, 115299900, 89016480, 8125, 438250, 9670750, 112454500, 737744125
Offset: 1

Views

Author

Wolfdieter Lang, Sep 13 2000

Keywords

Comments

The row polynomials are q(k,x) := sum(a(k,m)*x^(k-m),m=0..k), k=0,1,2,..
The k-th convolution of F0(n) := A000045(n+1), n >= 0, (Fibonacci numbers starting with F0(0)=1) with itself is Fk(n) := A037027(n+k,k) = (p(k-1,n)*(n+1)*F0(n+1) + q(k-1,n)*(n+2)*F0(n))/(k!*5^k), k=1,2,..., where the companion polynomials p(k,n) := sum(b(k,m)*n^(k-m),m=0..k) are the row polynomials of triangle b(k,m)= A057281(k,m).
a(k,0)= A020876(k), k >= 0.

Examples

			k=2: F2(n)=((5*n^2+21*n+16)*F(n+2)+(5*n^2+27*n+34)*F(n+1))/50, F(n) := A000045(n); see A001628.
2; 5,17; 15,120,225; 50,700,3050,4080; 175,3775,28625,89225,94440; ...
		

Crossrefs

Previous Showing 11-20 of 36 results. Next