A152881
Positions of those 1's that are followed by a 0, summed over all Fibonacci binary words of length n. A Fibonacci binary word is a binary word having no 00 subword.
Original entry on oeis.org
0, 1, 5, 15, 40, 95, 213, 455, 940, 1890, 3720, 7194, 13710, 25805, 48055, 88665, 162272, 294865, 532395, 955795, 1707110, 3034836, 5372400, 9473700, 16646700, 29155225, 50908793, 88644915, 153952120, 266726195, 461066385, 795320159
Offset: 1
a(4)=15 because the Fibonacci binary words of length 4 are 1110, 1111, 1101, 1010, 1011, 0110, 0111, 0101 and the positions of those 1's that are followed by a 0 are 3, 2, 1, 3, 1, 3 and 2; their sum is 15.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- A. F. Y. Zhao, Pattern Popularity in Multiply Restricted Permutations, Journal of Integer Sequences, 17 (2014), #14.10.3.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-5,0,3,1).
-
G := z^2*(1+2*z)/(1-z-z^2)^3: Gser := series(G, z = 0, 38): seq(coeff(Gser, z, n), n = 1 .. 34);
A268400
Number of North-East lattice paths from (0,0) to (n,n) that bounce off the diagonal y = x to the right exactly twice.
Original entry on oeis.org
1, 5, 23, 99, 413, 1691, 6842, 27464, 109631, 435887, 1728018, 6835668, 26996393, 106486529, 419639903, 1652533719, 6504159137, 25589302163, 100646529977, 395775842389, 1556107102849, 6117771240251, 24050813530815, 94550689834203, 371715533473021, 1461430355605367, 5746128800657639, 22594839306797223
Offset: 3
-
Rest[Rest[Rest[CoefficientList[Series[-((-1 + Sqrt[1 - 4 x])^3 x (-1 + Sqrt[1-4 x] + 2 x))/(2 (1 - Sqrt[1 - 4 x] + (-5 + Sqrt[1 - 4 x]) x)^3), {x, 0, 40}], x]]]] (* Vincenzo Librandi, Feb 28 2016 *)
-
a(n):=((sum((m+2)*(sum((m^2+(3-2*k)*m+k^2-3*k+2)*binomial(m-k,k),k,0,m/2)) *binomial(2*n-m-5,n-m-3),m,1,n-3))+2*binomial(2*n-4,n-2))/(2*n-2); /* Vladimir Kruchinin, Feb 28 2016 */
A057280
Coefficient triangle of polynomials (rising powers) related to Fibonacci convolutions. Companion triangle to A057995.
Original entry on oeis.org
2, 17, 5, 225, 120, 15, 4080, 3050, 700, 50, 94440, 89225, 28625, 3775, 175, 2666880, 3006000, 1208975, 223175, 19225, 625, 89016480, 115299900, 54824650, 12689800, 1537100, 93500, 2250, 3430929600, 4973077800, 2695596850, 737744125
Offset: 0
k=2: F2(n)=((16+5*n)*(n+1)*F0(n+1)+(17+5*n)*(n+2)*F0(n))/50, cf. A001628.
A057995
Coefficient triangle of polynomials (rising powers) related to Fibonacci convolutions. Companion triangle to A057280.
Original entry on oeis.org
1, 16, 5, 300, 160, 20, 6840, 4850, 1075, 75, 186120, 159650, 48175, 6100, 275, 5916240, 5846700, 2168650, 379700, 31550, 1000, 215717040, 238437900, 103057800, 22426825, 2605175, 153875, 3625, 8888140800, 10772348400
Offset: 0
k=2: F2(n)=((16+5*n)*(n+1)*F0(n+1)+(17+5*n)*(n+2)*F0(n))/50, cf. A001628.
Original entry on oeis.org
1, 3, 10, 25, 60, 133, 284, 585, 1175, 2310, 4464, 8502, 15995, 29775, 54920, 100487, 182556, 329555, 591550, 1056405, 1877821, 3323868, 5860800, 10297500, 18033925, 31487643, 54824854, 95211205, 164948700, 285121105, 491804144, 846631137, 1454746355, 2495275650
Offset: 0
-
a:=n->sum(binomial(n-j,j)*n*j/2,j=0..n): seq(a(n), n=2..30); # Zerinvary Lajos, Oct 19 2006
-
Table[((n+2)((3n+5)Fibonacci[n+1]+(n+1)Fibonacci[n]))/10,{n,0,30}] (* Harvey P. Dale, Feb 02 2020 *)
A212338
Sequence of coefficients of x in marked mesh pattern generating function Q_{n,132}^(0,0,2,0)(x).
Original entry on oeis.org
2, 7, 21, 53, 124, 273, 577, 1181, 2358, 4614, 8880, 16854, 31612, 58691, 108003, 197203, 357596, 644463, 1155059, 2059897, 3656988, 6465660, 11388480, 19990140, 34976870, 61019071, 106160481, 184228193, 318948124, 550962717, 949781269, 1634103701, 2806342578
Offset: 3
- Robert P. P. McKone, Table of n, a(n) for n = 3..5000
- S. Kitaev, J. Remmel and M. Tiefenbruck, Marked mesh patterns in 132-avoiding permutations I, arXiv preprint arXiv:1201.6243 [math.CO], 2012-2014.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-5,0,3,1).
-
LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 2, 7, 21, 53}, {3, 35}] (* Robert P. P. McKone, Jan 14 2022 *)
A212338[1, n2_] = 0; A212338[n1_, 1] = 0; A212338[2, n2_] = 0; A212338[n1_, 2] = 0; A212338[3, 3] = 1; A212338[n1_, n2_] := A212338[n1, n2] = A212338[n1 - 1, n2] + A212338[n1, n2 - 1] + A212338[n1 - 1, n2 - 1] + A212338[n1 - 2, n2] + A212338[n1, n2 - 2]; Table[A212338[5, y], {y, 3, 35}] (* Robert P. P. McKone, Jan 14 2022 *)
QQQ2[t,x]=2/(1 + (t*x - t)*(1 + t) +((1 + (t*x - t)*(1 + t))^2 - 4*t*x)^(1/2)); CoefficientList[Coefficient[Series[QQQ2[t, x], {t, 0, 22}], x],t] (* Robert Price, Jun 05 2012 *)
A245961
Number of 4-cycles in the Lucas cube Lambda(n).
Original entry on oeis.org
0, 0, 0, 0, 2, 5, 15, 35, 80, 171, 355, 715, 1410, 2730, 5208, 9810, 18280, 33745, 61785, 112309, 202840, 364245, 650705, 1157015, 2048532, 3612900, 6349200, 11121300, 19421150, 33820061, 58740915, 101777495, 175945280, 303516015, 522541903, 897942115
Offset: 0
a(3)=0 because the Lucas cube Lambda(3) is the star-tree on 4 vertices.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- S. Klavzar, On median nature and enumerative properties of Fibonacci-like cubes, Discr. Math. 299 (2005), 145-153.
- S. Klavzar, Structure of Fibonacci cubes: a survey, J. Comb. Optim., 25, 2013, 505-522.
- Eric Weisstein's World of Mathematics, Lucas Cube Graph
- Index entries for linear recurrences with constant coefficients, signature (3,0,-5,0,3,1).
-
[((n-n^2)*Fibonacci(n) + (3*n^2 - 5*n)*Fibonacci(n-1))/10: n in [0..50]]; // Vincenzo Librandi, Aug 11 2014
-
with(combinat): a := proc (n) options operator, arrow: (1/10)*n*(1-n)*fibonacci(n)+(1/10)*n*(3*n-5)*fibonacci(n-1) end proc: seq(a(n), n = 0 .. 35);
-
Table[((n - n^2) Fibonacci[n] + (3 n^2 - 5 n) Fibonacci[n - 1])/10, {n, 0, 50}] (* Vincenzo Librandi, Aug 11 2014 *)
LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 0, 2, 5, 15}, 20] (* Eric W. Weisstein, Jul 29 2023 *)
CoefficientList[Series[(-2 + x) x^3/(-1 + x + x^2)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Jul 29 2023 *)
-
concat([0,0,0,0], Vec(x^4*(x-2)/(x^2+x-1)^3 + O(x^100))) \\ Colin Barker, Aug 13 2014
A382406
Expansion of 1/(1 - x*(1 + x)^2)^3.
Original entry on oeis.org
1, 3, 12, 37, 111, 315, 864, 2307, 6027, 15471, 39132, 97755, 241606, 591636, 1437078, 3465748, 8305161, 19788957, 46910232, 110686101, 260064912, 608684490, 1419591546, 3300027546, 7648265728, 17676484410, 40747630332, 93704299336, 214999206831, 492262973433
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (3,3,-8,-12,3,17,15,6,1).
-
R := PowerSeriesRing(Rationals(), 40); f := 1/(1 - x*(1 + x)^2)^3; seq := [ Coefficient(f, n) : n in [0..30] ]; seq; // Vincenzo Librandi, Apr 10 2025
-
Table[Sum[Binomial[k+2,2]*Binomial[2*k,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 10 2025 *)
-
a(n) = sum(k=0, n, binomial(k+2, 2)*binomial(2*k, n-k));
A006479
From variance of Fibonacci search.
Original entry on oeis.org
0, 0, 0, 1, 5, 18, 52, 134, 318, 713, 1531, 3180, 6432, 12732, 24756, 47417, 89665, 167694, 310628, 570562, 1040226, 1883953, 3391799, 6073848, 10824096, 19204536, 33936456
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- K. J. Overholt, Efficiency of the Fibonacci search method, Nordisk Tidskr. Informationsbehandling (BIT) 13 (1973), 92-96.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-5,5,3,-2,-1).
A057282
Coefficient triangle of polynomials (falling powers) related to Fibonacci convolutions. Companion triangle to A057281.
Original entry on oeis.org
2, 5, 17, 15, 120, 225, 50, 700, 3050, 4080, 175, 3775, 28625, 89225, 94440, 625, 19225, 223175, 1208975, 3006000, 2666880, 2250, 93500, 1537100, 12689800, 54824650, 115299900, 89016480, 8125, 438250, 9670750, 112454500, 737744125
Offset: 1
k=2: F2(n)=((5*n^2+21*n+16)*F(n+2)+(5*n^2+27*n+34)*F(n+1))/50, F(n) := A000045(n); see A001628.
2; 5,17; 15,120,225; 50,700,3050,4080; 175,3775,28625,89225,94440; ...
Comments