cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A153713 Greatest number m such that the fractional part of Pi^A137994(n) <= 1/m.

Original entry on oeis.org

7, 159, 270, 307, 744, 757, 796, 1079, 1226, 7804, 13876, 62099, 70718, 86902, 154755
Offset: 1

Views

Author

Hieronymus Fischer, Jan 06 2009

Keywords

Examples

			a(2)=159 since 1/160<fract(Pi^A137994(2))=fract(Pi^3)=0.0062766...<=1/159.
		

Crossrefs

Programs

  • Mathematica
    A137994 = {1, 3, 81, 264, 281, 472, 1147, 2081, 3207, 3592, 10479, 12128, 65875, 114791, 118885};
    Table[fp = FractionalPart[Pi^A137994[[n]]]; m = Floor[1/fp];
    While[fp <= 1/m, m++]; m - 1, {n, 1, Length[A137994]}] (* Robert Price, Mar 26 2019 *)

Formula

a(n) = floor(1/fract(Pi^A137994(n))), where fract(x) = x-floor(x).

Extensions

a(14)-a(15) from Robert Price, Mar 26 2019

A134915 a(0) = 1, a(n) = floor(a(n - 1)*Pi).

Original entry on oeis.org

1, 3, 9, 28, 87, 273, 857, 2692, 8457, 26568, 83465, 262213, 823766, 2587937, 8130243, 25541911, 80242279, 252088554, 791959549, 2488014301, 7816327450, 24555716894, 77144059797, 242355211526, 761381352089, 2391950062303, 7514532743484, 23607600862089, 74165465437218
Offset: 0

Views

Author

Rolf Pleisch, Jan 29 2008

Keywords

Comments

Coincides with first 11 terms of A085839.

Crossrefs

Essentially the same as A115239.

Programs

  • Mathematica
    NestList[Floor[# \[Pi]]&, 1, 30]  (* Harvey P. Dale, Mar 28 2011 *)

Formula

a(n) = A115239(n), n > 0. [From R. J. Mathar, Oct 27 2008]

A138324 a(n) = the second term in the simple continued fraction of Pi^n.

Original entry on oeis.org

7, 1, 159, 2, 50, 2, 3, 1, 10, 21, 55, 5, 3, 5, 1, 1, 1, 14, 1, 12, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 11, 2, 1, 1, 3, 3, 1, 1, 1, 2, 1, 1, 1, 7, 1, 8, 1, 2, 33, 1, 1, 1, 1, 117, 1, 2, 1, 1, 1, 8, 1, 2, 1, 1, 1, 1, 1, 27, 1, 1, 5, 4, 1, 1, 1, 270, 1, 1, 1, 5, 3, 1, 25, 2, 10, 9, 1, 16, 1, 1, 1
Offset: 1

Views

Author

Leroy Quet, Mar 14 2008

Keywords

Crossrefs

Cf. A001672.

Programs

  • Mathematica
    Table[Floor[1/(# - Floor[#])] &[Pi^n], {n, 96}] (* Michael De Vlieger, Aug 29 2017 *)
  • PARI
    \p 2000 a(n) = floor(1/(Pi^n - floor(Pi^n))); for(i=1,100,print1(a(i),",")) \\ Vim Wenders, Mar 28 2008

Formula

a(n) = floor(1/(pi^n - floor(pi^n))).

Extensions

More terms from Vim Wenders, Mar 28 2008

A001674 a(n) = floor(sqrt( 2*Pi )^n).

Original entry on oeis.org

1, 2, 6, 15, 39, 98, 248, 621, 1558, 3906, 9792, 24546, 61528, 154230, 386597, 969056, 2429063, 6088760, 15262258, 38256809, 95895600, 240374623, 602529828, 1510318305, 3785806567, 9489609784, 23786924200, 59624976768, 149457652641, 374634777972
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A001674 (ceiling sqrt(2 Pi)^n), A017910 (floor sqrt(2)^n), A000149 (floor e^n), A001672 (floor Pi^n), A062541 (floor (Pi*e)^n), A121831 (floor (Pi+e)^n), A032739 (floor (Pi/e)^n), A014217 (floor ((1+sqrt(5))/2)^n).

Programs

  • Mathematica
    Table[Floor[Sqrt[2*Pi]^n], {n, 0, 50}] (* T. D. Noe, Aug 09 2012 *)
  • PARI
    a(n)=(2*Pi)^(n/2)\1 \\ M. F. Hasler, May 29 2018

Extensions

Edited by M. F. Hasler, May 29 2018

A071973 Number of primes less than or equal to Pi^n.

Original entry on oeis.org

0, 2, 4, 11, 25, 62, 162, 433, 1175, 3229, 9042, 25549, 73050, 210356, 610041, 1779830, 5218745, 15372304, 45455747, 134882577, 401480918, 1198344171, 3585783711, 10754085805, 32319203663, 97312548674, 293515297707, 886720888966, 2682778745396, 8127887397064
Offset: 0

Views

Author

Robert G. Wilson v, Jun 18 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Do[ Print[ PrimePi[Pi^n]], {n, 0, 28}]
  • PARI
    a(n) = primepi(Pi^n); \\ Michel Marcus, Oct 05 2020

Formula

a(n) = A000720(A001672(n)). - Michel Marcus, Oct 05 2020

Extensions

a(27)-a(29) from David Baugh, Oct 05 2020

A061294 a(n) = floor( n^Pi ).

Original entry on oeis.org

1, 8, 31, 77, 156, 278, 451, 687, 995, 1385, 1869, 2456, 3159, 3987, 4952, 6065, 7337, 8781, 10406, 12226, 14251, 16494, 18966, 21680, 24646, 27878, 31387, 35186, 39287, 43703, 48445, 53526, 58959, 64756, 70930, 77494, 84459, 91840, 99649
Offset: 1

Views

Author

Amarnath Murthy, Apr 26 2001

Keywords

Examples

			a(5) = floor(5^Pi) = floor(156.992545308865907578459198832649...) = 156.
		

Crossrefs

Cf. A001672.

Programs

Extensions

More terms from Winston C. Yang (winston(AT)cs.wisc.edu), May 19 2001

A137299 Square matrix read by antidiagonals: T(m,n) = m-th term in the continued fraction expansion of Pi^n.

Original entry on oeis.org

3, 9, 7, 31, 1, 15, 97, 159, 6, 1, 306, 2, 3, 1, 292, 961, 50, 2, 7, 2, 1, 3020, 2, 1, 3, 1, 47, 1, 9488, 3, 1, 4, 1, 13, 1, 1, 29809, 1, 2, 1, 60, 16539, 2, 8, 2, 93648, 10, 1, 2, 3, 1, 1, 1, 1, 1, 294204, 21, 14, 7, 3, 9, 4, 6, 3, 1, 3, 924269, 55, 15, 1, 1, 2, 1, 23, 7, 1, 2, 1
Offset: 1

Views

Author

M. F. Hasler, Mar 14 2008

Keywords

Comments

The sequence was suggested by Leroy Quet.

Examples

			The matrix limited to order 10 is given by matrix(10,10,m,n,contfrac(Pi^n)[m]):
[   3   9   31    97   306   961  3020  9488 29809 93648]
[   7   1  159     2    50     2     3     1    10    21]
[  15   6    3     2     1     1     2     1    14    15]
[   1   1    7     3     4     1     2     7     1     1]
[ 292   2    1     1    60     3     3     1     9     4]
[   1  47   13 16539     1     9     2     1     3     2]
[   1   1    2     1     4     1    10     3     1     1]
[   1   8    1     6    23     5     4     1     5     3]
[   2   1    3     7     1     1     1     1     8     2]
[   1   1    1     6     2     3     1     1    16     1]
		

Crossrefs

Programs

  • Mathematica
    A137299list[dmax_]:=With[{a=Array[ContinuedFraction[Pi^(dmax+1-#),#]&,dmax]},Array[Diagonal[a,#]&,dmax,1-dmax]];A137299list[10] (* Generates 10 antidiagonals *) (* Paolo Xausa, Nov 14 2023 *)
  • PARI
    concat(vector(20,i,vector(i,j,contfrac(Pi^(i-j+1))[j])))
    
  • PARI
    T(m,n)=contfrac(Pi^n)[m]

A121245 (Floor(n*Pi))^n.

Original entry on oeis.org

3, 36, 729, 20736, 759375, 34012224, 1801088541, 152587890625, 10578455953408, 819628286980801, 70188843638032384, 6582952005840035281, 671088640000000000000, 73885357344138503765449
Offset: 1

Views

Author

Mohammad K. Azarian, Aug 22 2006

Keywords

Crossrefs

Cf. A001672.

Programs

A137995 Nearest integer to 1/frac(Pi^A137994(n)), where frac(x) = x - floor(x).

Original entry on oeis.org

7, 159, 270, 308, 745, 758, 796, 1080, 1227, 7805, 13876, 62099, 70718, 86902, 154756
Offset: 1

Views

Author

M. F. Hasler, inspired by Leroy Quet, Apr 05 2008

Keywords

Comments

Sequence A137994 could be defined as "least positive integer such that this one (without rounding) is increasing".
The term a(1)=7 is not surprising (3 + 1/7 = 3.14...) but it comes as a funny surprise that the next term, a(2)=159, matches the next 3 digits of Pi and a(3) just differs by 5 from the next 3 digits!

Crossrefs

Programs

  • PARI
    default(realprecision,10^4); f=1; for(i=1,10^9, frac(Pi^i)
    				

Extensions

a(7) inserted and a(11)-a(15) added by Amiram Eldar, Jun 28 2025

A235361 Floor((n + Pi)^2).

Original entry on oeis.org

9, 17, 26, 37, 51, 66, 83, 102, 124, 147, 172, 199, 229, 260, 293, 329, 366, 405, 446, 490, 535, 582, 632, 683, 736, 791, 849, 908, 969, 1033, 1098, 1165, 1234, 1306, 1379, 1454, 1532, 1611, 1692, 1775, 1861, 1948, 2037, 2129, 2222, 2317, 2414, 2514, 2615
Offset: 0

Views

Author

Alex Ratushnyak, Jan 07 2014

Keywords

Examples

			a(1) = floor((Pi + 1)^2) = floor(17.1527897...) = 17.
		

Crossrefs

Programs

  • Mathematica
    Table[Floor[(n + Pi)^2], {n, 0, 49}] (* Alonso del Arte, Jan 07 2014 *)
  • PARI
    a(n) = floor((n+Pi)^2); \\ Michel Marcus, Jan 07 2014
Previous Showing 11-20 of 24 results. Next