cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 463 results. Next

A361936 Indices of the squares in the sequence of powerful numbers (A001694).

Original entry on oeis.org

1, 2, 4, 5, 6, 9, 10, 11, 13, 14, 16, 19, 20, 21, 24, 26, 28, 29, 31, 33, 35, 36, 39, 40, 41, 44, 45, 46, 48, 50, 51, 55, 56, 59, 60, 61, 65, 67, 68, 70, 71, 73, 75, 76, 79, 81, 84, 85, 87, 88, 90, 92, 94, 96, 97, 100, 102, 104, 107, 109, 110, 111, 114, 116, 117, 119, 120
Offset: 1

Views

Author

Amiram Eldar, Mar 31 2023

Keywords

Comments

Equivalently, the number of powerful numbers that do not exceed n^2.
The asymptotic density of this sequence is zeta(3)/zeta(3/2) = 1/A090699 = 0.460139... .
If k is a term of A336175 then a(k) and a(k+1) are consecutive integers, i.e., a(k+1) = a(k) + 1.

Crossrefs

Programs

  • Mathematica
    Position[Select[Range[5000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &], _?(IntegerQ[Sqrt[#]] &)] // Flatten
  • PARI
    lista(kmax) = {my(c = 0); for(k = 1, kmax, if(ispowerful(k), c++); if(issquare(k), print1(c, ", "))); }
    
  • Python
    from math import isqrt
    from sympy import integer_nthroot, factorint
    def A361936(n):
        m = n**2
        return int(sum(isqrt(m//k**3) for k in range(1, integer_nthroot(m, 3)[0]+1) if all(d<=1 for d in factorint(k).values()))) # Chai Wah Wu, Sep 10 2024

Formula

a(n) = A217038(n^2).
a(n+1) - a(n) = A119241(n) + 1.
a(n) = (zeta(3/2)/zeta(3)) * n + O(n^(2/3)).

A368105 The number of bi-unitary divisors of n that are powerful (A001694).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 3, 3, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 12 2023

Keywords

Comments

First differs from A095691 and A365552 at n = 32.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2 || OddQ[e], e, e -1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x%2 || x == 2, x, x-1), factor(n)[, 2]));

Formula

Multiplicative with a(p^e) = e if e = 2 or e is odd, and e-1 otherwise.
a(n) >= 1, with equality if and only if n is squarefree (A005117).
a(n) <= A286324(n), with equality if and only if n equals the square of a squarefree number (A062503).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = zeta(2) * Product_{p prime} (1 + 1/p^3 - 1/p^4 + 1/p^5) = 1.87133814920590891161... .

A084371 Squarefree kernels of powerful numbers (A001694).

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 3, 2, 6, 7, 2, 6, 3, 10, 6, 11, 5, 2, 6, 13, 14, 10, 6, 15, 3, 2, 6, 17, 6, 7, 19, 14, 10, 6, 21, 22, 10, 2, 23, 6, 5, 6, 15, 26, 3, 14, 10, 29, 6, 30, 31, 22, 6, 10, 2, 33, 15, 6, 34, 35, 6, 21, 11, 26, 37, 14, 38, 39, 14, 10, 41, 6, 42, 30, 43, 22, 6, 10
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 23 2003

Keywords

Examples

			A001694(11) = 64 = 2^6 -> a(11) = 2,
A001694(12) = 72 = 2^3 * 3^2 -> a(12) = 2*3 = 6,
A001694(13) = 81 = 3^4 -> a(13) = 3.
		

Crossrefs

Programs

  • Mathematica
    s = {1}; Do[f = FactorInteger[n]; If[Min @ f[[;;, 2]] > 1, AppendTo[s, Times @@ f[[;;, 1]]]], {n, 2, 10^4}]; s (* Amiram Eldar, Aug 22 2019 *)
  • PARI
    rad(n) = factorback(factorint(n)[, 1]); \\ A007947
    lista(nn) = apply(x->rad(x), select(x->ispowerful(x), [1..nn])); \\ Michel Marcus, Aug 22 2019
    
  • Python
    from math import prod, isqrt
    from sympy import mobius, integer_nthroot, primefactors
    def A084371(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l, j = n+x-squarefreepi(integer_nthroot(x,3)[0]), 0, isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        return prod(primefactors(bisection(f,n,n))) # Chai Wah Wu, Sep 13 2024

Formula

a(n) = A007947(A001694(n)).
From Amiram Eldar, May 13 2023: (Start)
Sum_{A001694(k) < x} a(k) = (1/2) * x + o(x) (Jakimczuk, 2017). [corrected Sep 21 2024]
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(3)/zeta(3/2))^2/2 = 0.1058641473... . (End)

A115645 Powerful(1) numbers (A001694) that are sums of distinct factorials.

Original entry on oeis.org

1, 8, 9, 25, 27, 32, 121, 128, 144, 729, 841, 864, 5041, 5184, 40328, 41067, 45369, 45387, 46208, 46225, 363609, 403225, 3674889, 43954688, 6230694987, 1401602635449
Offset: 1

Views

Author

Giovanni Resta, Jan 27 2006

Keywords

Comments

Factorials 0! and 1! are not considered distinct.
a(27) > 10^18, if it exists. - Amiram Eldar, Feb 24 2024

Examples

			6230694987 = 13!+10!+8!+7!+4!+2!+1! = 3^3*11^2*1381^2.
		

Crossrefs

Intersection of A001694 and A059590.

Programs

  • Mathematica
    pwfQ[n_] := n==1 || Min[Last /@ FactorInteger@n] > 1; fac=Range[20]!;lst={}; Do[ n = Plus@@(fac*IntegerDigits[k, 2, 20]); If[pwfQ[n], AppendTo[lst, n]], {k, 2^20-1}]; lst
    q[n_] := Module[{k = n, m = 2, r, ans = True}, While[{k, r} = QuotientRemainder[k, m]; k != 0 || r != 0, If[r > 1, ans = False; Break[]]; m++]; ans]; With[{max = 2^20-1}, Select[Union[Flatten[Table[i^2*j^3, {j, 1, max^(1/3)}, {i, 1, Sqrt[max/j^3]}]]], q]] (* Amiram Eldar, Feb 24 2024 *)

A115689 Powerful(1) numbers (A001694) whose digit reversal is a square.

Original entry on oeis.org

1, 4, 9, 100, 121, 144, 169, 400, 441, 484, 675, 676, 900, 961, 1000, 1089, 1800, 4000, 9000, 9801, 10000, 10201, 10404, 10609, 12100, 12321, 12544, 12769, 14400, 14641, 14884, 16900, 18000, 18252, 40000, 40401, 40804, 44100, 44521, 44944
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			18252=2^2*3^3*13^2 is powerful and 25281=159^2.
		

Crossrefs

Programs

  • Mathematica
    Join[{1},Select[Range[50000],Min[FactorInteger[#][[All,2]]]>1&& IntegerQ[ Sqrt[ IntegerReverse[#]]]&]] (* Harvey P. Dale, Aug 08 2020 *)

A115690 Squares whose digit reversal is a powerful(1) number (A001694).

Original entry on oeis.org

1, 4, 9, 100, 121, 144, 169, 400, 441, 484, 576, 676, 900, 961, 1089, 9801, 10000, 10201, 10404, 10609, 12100, 12321, 12544, 12769, 14400, 14641, 14884, 16900, 25281, 27225, 40000, 40401, 40804, 44100, 44521, 44944, 48400, 48841, 57600
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Comments

If x is a member, then so is 100*x. - Robert Israel, Mar 16 2020

Examples

			25281=159^2 and 18252=2^2*3^3*13^2 is powerful.
		

Crossrefs

Subsequence of A115656.
A033294 is a subsequence, and the main entry for this sequence.

Programs

  • Maple
    filter:= proc(n) local L,i,x;
      L:= convert(n,base,10);
      x:=add(L[-i]*10^(i-1),i=1..nops(L));
      andmap(t -> t[2]>=2, ifactors(x)[2]):
    end proc:select(filter, [seq(i^2,i=1..10^4)]); # Robert Israel, Mar 16 2020
  • PARI
    is(k) = ispowerful(fromdigits(Vecrev(digits(k))));
    select(is, vector(300, n, n^2)) \\ Michel Marcus, Nov 01 2022

Formula

Trivially, n^2 <= a(n) <= 100^(n-1). - Charles R Greathouse IV, Nov 01 2022

A115693 Powerful(1) numbers (A001694) whose digit reversal is a cube.

Original entry on oeis.org

1, 8, 72, 100, 343, 800, 1000, 1331, 7200, 8000, 10000, 34300, 72000, 80000, 100000, 133100, 343000, 720000, 800000, 1000000, 1030301, 1331000, 1367631, 3430000, 7200000, 8000000, 10000000, 13310000, 34300000, 72000000, 80000000, 100000000, 103030100, 133100000
Offset: 1

Views

Author

Giovanni Resta, Jan 31 2006

Keywords

Examples

			72 = 2^3*3^2 is powerful and 27 = 3^3.
		

Crossrefs

Programs

  • Mathematica
    Select[Join[{1},Select[Range[10000000],Min[Transpose[ FactorInteger[#]] [[2]]]>1&]],IntegerQ[Power[FromDigits[Reverse[IntegerDigits[#]]], (3)^-1]]&] (* Harvey P. Dale, Sep 18 2011 *)

Extensions

a(28)-a(34) from Amiram Eldar, Feb 24 2024

A174172 Partials sums of A001694.

Original entry on oeis.org

1, 5, 13, 22, 38, 63, 90, 122, 158, 207, 271, 343, 424, 524, 632, 753, 878, 1006, 1150, 1319, 1515, 1715, 1931, 2156, 2399, 2655, 2943, 3232, 3556, 3899, 4260, 4652, 5052, 5484, 5925, 6409, 6909, 7421, 7950, 8526, 9151, 9799, 10474, 11150, 11879, 12663
Offset: 1

Views

Author

Jonathan Vos Post, Mar 10 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate @ Select[Range[1000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 1 &] (* Amiram Eldar, Jan 30 2023 *)
  • PARI
    lista(kmax) = {my(s = 0); for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 1, s += k; print1(s, ", ")));} \\ Amiram Eldar, May 13 2023

Formula

a(n) = Sum_{i=1..n} A001694(i).
a(n) ~ (zeta(3)^2/(3*zeta(3/2)^2)) * n^3. - Amiram Eldar, Jan 30 2023
a(n) = c * A001694(n)^(3/2) + o(A001694(n)^(3/2)), where c = zeta(3/2)/(3*zeta(3)) = 0.7244181041... (Jakimczuk, 2017). - Amiram Eldar, May 13 2023

A240591 The smaller of a pair of successive powerful numbers (A001694) without any prime number between them.

Original entry on oeis.org

8, 25, 32, 121, 288, 675, 1331, 1369, 1936, 2187, 2700, 3125, 5324, 6724, 9800, 10800, 12167, 15125, 32761, 39200, 48668, 70225, 79507, 88200, 97336, 107648, 143641, 156800, 212521, 228484, 235224, 280900, 312481, 332928, 456968, 465124, 574564, 674028, 744769, 829921, 830297, 857476, 877952, 940896
Offset: 1

Views

Author

Antonio Roldán, Apr 08 2014

Keywords

Examples

			25 is in the sequence because A001694(6)=25, A001694(7)=27, without primes between them.
		

Crossrefs

Supersequence of A060355.

Programs

  • Mathematica
    Select[Partition[Join[{1},Select[Range[10^6],Min@FactorInteger[#][[All, 2]]> 1&]],2,1],PrimePi[#[[1]]]==PrimePi[#[[2]]]&][[All,1]] (* Harvey P. Dale, Mar 28 2018 *)
  • PARI
    ispowerful(n)={local(h);if(n==1,h=1,h=(vecmin(factor(n)[, 2])>1));return(h)}
    nextpowerful(n)={local(k);k=n+1;while(!ispowerful(k),k+=1);return(k)}
    {for(i=1,10^6,if(ispowerful(i),if(nextprime(i)>=nextpowerful(i),print1(i, ", "))))}
    
  • Python
    from itertools import count, islice
    from math import isqrt
    from sympy import mobius, integer_nthroot, nextprime
    def A240591_gen(): # generator of terms
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c, l, j = x-squarefreepi(integer_nthroot(x,3)[0]), 0, isqrt(x)
            while j>1:
                k2 = integer_nthroot(x//j**2,3)[0]+1
                w = squarefreepi(k2-1)
                c -= j*(w-l)
                l, j = w, isqrt(x//k2**3)
            return c+l
        m = 1
        for n in count(2):
            k = bisection(lambda x:f(x)+n,m,m)
            if nextprime(m) > k:
                yield m
            m = k
    A240591_list = list(islice(A240591_gen(),30)) # Chai Wah Wu, Sep 14 2024

A337044 Numbers k such that both k and sigma(k)=A000203(k) are powerful, i.e., are terms of A001694.

Original entry on oeis.org

1, 81, 343, 400, 9261, 27783, 32400, 137200, 189728, 224939, 972000, 1705636, 2205472, 3087000, 3591200, 3648100, 3704400, 7968032, 11113200, 13645088, 15350724, 15367968, 18220059, 21161304, 24240600, 25992000, 26680500, 29184800, 32832900, 48586824, 51595489
Offset: 1

Views

Author

Andrew Howroyd and Hugo Pfoertner, Aug 12 2020

Keywords

Comments

From David A. Corneth, Aug 14 2020: (Start)
If coprime numbers k and m are in the sequence then k*m is in the sequence.
Up to 10^15, the largest prime divisor of a term is 178987 for which the product of the primes with multiplicity 1 of sigma(178987^2) is 16653 = 3 * 7 * 13 * 61. The second largest prime divisor is 25073 (for which sigma(25073^2) has a product of primes with multiplicity 1 of 341 = 11 * 31), which is quite a bit smaller than 178987. Can we somehow constrain the list of possible prime divisors to ease computation? (End)

Crossrefs

Programs

  • PARI
    for(k=1, 60000000, if(ispowerful(k) && ispowerful(sigma(k)), print1(k, ", ")))
    
  • PARI
    \\ See Corneth link \\ David A. Corneth, Aug 14 2020
Previous Showing 31-40 of 463 results. Next