A094646
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -2, 1, 2, -3, 1, 0, 2, -3, 1, 0, 2, -1, -2, 1, 0, 4, 0, -5, 0, 1, 0, 12, 4, -15, -5, 3, 1, 0, 48, 28, -56, -35, 7, 7, 1, 0, 240, 188, -252, -231, 0, 42, 12, 1, 0, 1440, 1368, -1324, -1638, -231, 252, 114, 18, 1, 0, 10080, 11016, -7900, -12790, -3255, 1533, 1050, 240, 25, 1
Offset: 0
Triangle begins
1;
-2, 1;
2, -3, 1;
0, 2, -3, 1;
0, 2, -1, -2, 1;
0, 4, 0, -5, 0, 1;
...
risefac(x-2,3) = (x-2)*(x-1)*x = 2*x-3*x^2+x^3.
-1 = T(4,2) = T(3,1) + 1*T(3,2) = 2 + (-3).
T(4,3) = 2*abs(S1(2,3)) - 3*abs(S1(2,2)) + 1*abs(S1(2,1)) = 2*0 - 3*1 + 1*1 = -2.
-
A094646_row := n -> seq((-1)^(n-k)*coeff(expand(pochhammer(x-n+3, n)), x, k), k=0..n): seq(print(A094646_row(n)), n = 0..6); # Peter Luschny, May 16 2013
-
Flatten[ Table[ CoefficientList[ Pochhammer[x-2, n], x], {n, 0, 10}]] (* Jean-François Alcover, Sep 26 2011 *)
A144354
Partition number array, called M31(4), related to A049352(n,m)= |S1(4;n,m)| (generalized Stirling triangle).
Original entry on oeis.org
1, 4, 1, 20, 12, 1, 120, 80, 48, 24, 1, 840, 600, 800, 200, 240, 40, 1, 6720, 5040, 7200, 4000, 1800, 4800, 960, 400, 720, 60, 1, 60480, 47040, 70560, 84000, 17640, 50400, 28000, 33600, 4200, 16800, 6720, 700, 1680, 84, 1, 604800, 483840, 752640, 940800, 504000, 188160
Offset: 1
[1];[4,1];[20,12,1];[120,80,48,24,1];[840,600,800,200,240,40,1];...
a(4,3)= 48 = 3*|S1(4;2,1)|^2. The relevant partition of 4 is (2^2).
A144885
Partition number array, called M31hat(4).
Original entry on oeis.org
1, 4, 1, 20, 4, 1, 120, 20, 16, 4, 1, 840, 120, 80, 20, 16, 4, 1, 6720, 840, 480, 400, 120, 80, 64, 20, 16, 4, 1, 60480, 6720, 3360, 2400, 840, 480, 400, 320, 120, 80, 64, 20, 16, 4, 1, 604800, 60480, 26880, 16800, 14400, 6720, 3360, 2400, 1920, 1600, 840, 480, 400, 320
Offset: 1
[1];[4,1];[20,4,1];[120,20,16,4,1];[840,120,80,20,16,4,1];...
a(4,3)= 16 = |S1(4;2,1)|^2. The relevant partition of 4 is (2^2).
A172455
The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.
Original entry on oeis.org
1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1
G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 307.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- NIST Digital Library of Mathematical Functions, Airy Functions.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Eric Weisstein's World of Mathematics, Airy Functions, contains the definitions of Ai(x), Bi(x).
Cf.
A000079 S(1,1,-1),
A000108 S(0,0,1),
A000142 S(1,-1,0),
A000244 S(2,1,-2),
A000351 S(4,1,-4),
A000400 S(5,1,-5),
A000420 S(6,1,-6),
A000698 S(2,-3,1),
A001710 S(1,1,0),
A001715 S(1,2,0),
A001720 S(1,3,0),
A001725 S(1,4,0),
A001730 S(1,5,0),
A003319 S(1,-2,1),
A005411 S(2,-4,1),
A005412 S(2,-2,1),
A006012 S(-1,2,2),
A006318 S(0,1,1),
A047891 S(0,2,1),
A049388 S(1,6,0),
A051604 S(3,1,0),
A051605 S(3,2,0),
A051606 S(3,3,0),
A051607 S(3,4,0),
A051608 S(3,5,0),
A051609 S(3,6,0),
A051617 S(4,1,0),
A051618 S(4,2,0),
A051619 S(4,3,0),
A051620 S(4,4,0),
A051621 S(4,5,0),
A051622 S(4,6,0),
A051687 S(5,1,0),
A051688 S(5,2,0),
A051689 S(5,3,0),
A051690 S(5,4,0),
A051691 S(5,5,0),
A053100 S(6,1,0),
A053101 S(6,2,0),
A053102 S(6,3,0),
A053103 S(6,4,0),
A053104 S(7,1,0),
A053105 S(7,2,0),
A053106 S(7,3,0),
A062980 S(6,-8,1),
A082298 S(0,3,1),
A082301 S(0,4,1),
A082302 S(0,5,1),
A082305 S(0,6,1),
A082366 S(0,7,1),
A082367 S(0,8,1),
A105523 S(0,-2,1),
A107716 S(3,-4,1),
A111529 S(1,-3,2),
A111530 S(1,-4,3),
A111531 S(1,-5,4),
A111532 S(1,-6,5),
A111533 S(1,-7,6),
A111546 S(1,0,1),
A111556 S(1,1,1),
A143749 S(0,10,1),
A146559 S(1,1,-2),
A167872 S(2,-3,2),
A172450 S(2,0,-1),
A172485 S(-1,-2,3),
A177354 S(1,2,1),
A292186 S(4,-6,1),
A292187 S(3, -5, 1).
-
a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
-
{a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
-
S(v1, v2, v3, N=16) = {
my(a = vector(N)); a[1] = 1;
for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
};
S(6,-4,-1)
\\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
\\ Gheorghe Coserea, May 12 2017
A129923
a(n) = (n+5)! / 5.
Original entry on oeis.org
24, 144, 1008, 8064, 72576, 725760, 7983360, 95800320, 1245404160, 17435658240, 261534873600, 4184557977600, 71137485619200, 1280474741145600, 24329020081766400, 486580401635328000, 10218188434341888000
Offset: 0
-
[Factorial(n+5)/5: n in [0..30]]; // G. C. Greubel, Sep 28 2024
-
Table[(n+5)!/5, {n, 0, 5 + 25}]
Range[5,30]!/5 (* Harvey P. Dale, Mar 29 2023 *)
-
a(n)=(n+5)!/5;
-
[factorial(n+5)//5 for n in range(31)] # G. C. Greubel, Sep 28 2024
A144888
Second column (m=2) of triangle A144886 (S1hat(4)).
Original entry on oeis.org
1, 4, 36, 200, 1720, 12480, 118560, 1081920, 11793600, 131443200, 1658764800, 21990528000, 319711795200, 4922394624000, 81508654080000, 1428114530304000, 26582538673152000, 521466739605504000, 10779099461222400000, 233753593186713600000, 5310546788872765440000
Offset: 0
A158777
Irregular array T(n,k), read by rows: row n is the polynomial expansion in t of p(x,t) = exp(t*x)/(1 - x/t - t^4 * x^4) with weighting factors t^n*n!.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 2, 0, 1, 6, 0, 6, 0, 3, 0, 1, 24, 0, 24, 0, 12, 0, 4, 0, 25, 120, 0, 120, 0, 60, 0, 20, 0, 245, 0, 121, 720, 0, 720, 0, 360, 0, 120, 0, 2190, 0, 1446, 0, 361, 5040, 0, 5040, 0, 2520, 0, 840, 0, 20370, 0, 15162, 0, 5047, 0, 841, 40320, 0, 40320, 0, 20160, 0, 6720, 0
Offset: 0
Array T(n,k) (with n >= 0 and 0 <= k <= 2*n) begins as follows:
1;
1, 0, 1;
2, 0, 2, 0, 1;
6, 0, 6, 0, 3, 0, 1;
24, 0, 24, 0, 12, 0, 4, 0, 25;
120, 0, 120, 0, 60, 0, 20, 0, 245, 0, 121;
720, 0, 720, 0, 360, 0, 120, 0, 2190, 0, 1446, 0, 361;
5040, 0, 5040, 0, 2520, 0, 840, 0, 20370, 0, 15162, 0, 5047, 0, 841;
...
-
# Triangle T(n, k) without the zeros (even k):
W := proc(n, m) local v, s, h; v := 0;
for s from 0 to m do
if 0 = (m - s) mod 4 then
h := (m - s)/4;
v := v + binomial(n - s - 3*h, h)/s!;
end if; end do; n!*v; end proc;
for n1 from 0 to 20 do
seq(W(n1,m1), m1=0..n1); end do; # Petros Hadjicostas, Apr 15 2020
-
(* Generates the sequence in the data section *)
Table[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x/t - t^4*x^4), {x, 0, 20}], n]], {n, 0, 10}];
a = Table[CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/(1 - x/t - t^4*x^4), {x, 0, 20}], n]], t], {n, 0, 10}];
Flatten[%]
(* Generates row sums *)
Table[Apply[Plus, CoefficientList[Expand[t^n*n!*SeriesCoefficient[Series[Exp[t*x]/( 1 - x/t - t^4*x^4), {x, 0, 20}], n]], t]], {n, 0, 10}];
A249619
Triangle T(m,n) = number of permutations of a multiset with m elements and signature corresponding to n-th integer partition (A194602).
Original entry on oeis.org
1, 1, 2, 1, 6, 3, 1, 24, 12, 4, 6, 1, 120, 60, 20, 30, 5, 10, 1, 720, 360, 120, 180, 30, 60, 6, 90, 15, 20, 1, 5040, 2520, 840, 1260, 210, 420, 42, 630, 105, 140, 7, 210, 21, 35, 1, 40320, 20160, 6720, 10080, 1680, 3360, 336, 5040, 840, 1120, 56
Offset: 0
Triangle begins:
n 0 1 2 3 4 5 6 7 8 9 10
m
0 1
1 1
2 2 1
3 6 3 1
4 24 12 4 6 1
5 120 60 20 30 5 10 1
6 720 360 120 180 30 60 6 90 15 20 1
A303613
a(n) = [x^n] (1/6 * Sum_{k=0..n} (k+3)!*x^k)^(1/2).
Original entry on oeis.org
1, 2, 8, 44, 300, 2408, 22056, 225824, 2547352, 31322640, 416442016, 5948450912, 90815006528, 1475513165184, 25419300628160, 462839142264960, 8882065110092000, 179190173518717120, 3791700201187720960, 83977684252758211200, 1942984028971973710720
Offset: 0
A166553
Triangle read by rows: T(n, k) = [x^k]( (n+2)!*(3*EulerE(n, x+1) - EulerE(n, x))/4 ).
Original entry on oeis.org
1, 3, 3, 0, 24, 12, -30, 0, 180, 60, 0, -720, 0, 1440, 360, 2520, 0, -12600, 0, 12600, 2520, 0, 120960, 0, -201600, 0, 120960, 20160, -771120, 0, 3810240, 0, -3175200, 0, 1270080, 181440, 0, -61689600, 0, 101606400, 0, -50803200, 0, 14515200, 1814400
Offset: 0
Triangle begins as:
1;
3, 3;
0, 24, 12;
-30, 0, 180, 60;
0, -720, 0, 1440, 360;
2520, 0, -12600, 0, 12600, 2520;
0, 120960, 0, -201600, 0, 120960, 20160;
-771120, 0, 3810240, 0, -3175200, 0, 1270080, 181440;
-
m:= 13;
R:=PowerSeriesRing(Integers(), m+1);
EulerE:= func< n | (2^(n+1)/(n+1))*( Evaluate(BernoulliPolynomial(n+1), 1/2) - 2^(n+1)*Evaluate(BernoulliPolynomial(n+1), 1/4) ) >;
f:= func< n,x | (Factorial(n+2)/2)*( 3*x^n - 2*(&+[ Binomial(n,j)*(EulerE(j)/2^j)*(x - 1/2)^(n-j): j in [0..n]]) ) >;
A166553:= func< n,k | Coefficient(R!( f(n,x) ), k) >;
[A166553(n,k): k in [0..n], n in [0..m]]; // G. C. Greubel, Nov 30 2024
-
(* first program *)
p[t_]= Exp[x*t](3*Exp[t] - 1)/(Exp[t] + 1);
With[{m=12}, Table[(n!*(n+2)!/2)*CoefficientList[SeriesCoefficient[ Series[p[t], {t,0,m+1}], n], x], {n,0,m}]]//Flatten
(* Second program *)
f[n_, x_]:= (n+2)!*(3*EulerE[n, x+1] - EulerE[n, x])/4;
A166553[n_, k_]:= Coefficient[Series[f[n, x], {x,0,n}], x, k];
Table[A166553[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Nov 30 2024 *)
-
def f(n,x): return (factorial(n+2)/2)*( 3*x^n - 2*sum( binomial(n,j)*euler_number(j)*(x-1/2)^(n-j)/2^j for j in range(n+1)) )
def A166553(n,k): return ( f(n,x) ).series(x,n+1).list()[k]
print(flatten([[A166553(n,k) for k in range(n+1)] for n in range(14)])) # G. C. Greubel, Nov 30 2024
Comments