cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A092582 Triangle read by rows: T(n,k) is the number of permutations p of [n] having length of first run equal to k.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 12, 8, 3, 1, 60, 40, 15, 4, 1, 360, 240, 90, 24, 5, 1, 2520, 1680, 630, 168, 35, 6, 1, 20160, 13440, 5040, 1344, 280, 48, 7, 1, 181440, 120960, 45360, 12096, 2520, 432, 63, 8, 1, 1814400, 1209600, 453600, 120960, 25200, 4320, 630, 80, 9, 1
Offset: 1

Views

Author

Emeric Deutsch and Warren P. Johnson (wjohnson(AT)bates.edu), Apr 10 2004

Keywords

Comments

Row sums are the factorial numbers (A000142). First column is A001710.
T(n,k) = number of permutations of [n] in which 1,2,...,k is a subsequence but 1,2,...,k,k+1 is not. Example: T(4,2)=8 because 1324, 1342, 1432, 4132, 3124, 3142, 3412 and 4312, are the only permutations of [4] in which 12 is a subsequence but 123 is not. - Emeric Deutsch, Nov 12 2004
T(n,k) is the number of deco polyominoes of height n with k cells in the last column. (A deco polyomino is a directed column-convex polyomino in which the height, measured along the diagonal, is attained only in the last column). - Emeric Deutsch, Jan 06 2005
T(n,k) is the number of permutations p of [n] for which the smallest i such that p(i)Emeric Deutsch, Feb 23 2008
Adding columns 2,4,6,... one obtains the derangement numbers 0,1,2,9,44,... (A000166). See the Bona reference (p. 118, Exercises 41,42). - Emeric Deutsch, Feb 23 2008
Matrix inverse of A128227*A154990. - Mats Granvik, Feb 08 2009
Differences in the columns of A173333 which counts the n-permutations with an initial ascending run of length at least k. - Geoffrey Critzer, Jun 18 2017
The triangle with each row reversed is A130477. - Michael Somos, Jun 25 2017

Examples

			T(4,3) = 3 because 1243, 1342 and 2341 are the only permutations of [4] having length of first run equal to 3.
     1;
     1,    1;
     3,    2,   1;
    12,    8,   3,   1;
    60,   40,  15,   4,  1;
   360,  240,  90,  24,  5,  1;
  2520, 1680, 630, 168, 35,  6,  1;
  ...
		

References

  • M. Bona, Combinatorics of Permutations, Chapman&Hall/CRC, Boca Raton, Florida, 2004.

Crossrefs

Programs

  • GAP
    Flat(List([1..11],n->Concatenation([1],List([1..n-1],k->Factorial(n)*k/Factorial(k+1))))); # Muniru A Asiru, Jun 10 2018
    
  • Magma
    A092582:= func< n,k | k eq n select 1 else k*Factorial(n)/Factorial(k+1) >;
    [A092582(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Sep 06 2022
    
  • Mathematica
    Drop[Drop[Abs[Map[Select[#, # < 0 &] &, Map[Differences, nn = 10; Range[0, nn]! CoefficientList[Series[(Exp[y x] - 1)/(1 - x), {x, 0, nn}], {x, y}]]]], 1], -1] // Grid (* Geoffrey Critzer, Jun 18 2017 *)
  • PARI
    {T(n, k) = if( n<1 || k>n, 0, k==n, 1, n! * k /(k+1)!)}; /* Michael Somos, Jun 25 2017 */
    
  • SageMath
    def A092582(n,k): return 1 if (k==n) else k*factorial(n)/factorial(k+1)
    flatten([[A092582(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Sep 06 2022

Formula

T(n, k) = n!*k/(k+1)! for k
Inverse of:
1;
-1, 1;
-1, -2, 1;
-1, -2, -3, 1;
-1, -2, -3, -4, 1;
... where A002260 = (1; 1,2; 1,2,3; ...). - Gary W. Adamson, Feb 22 2012
T(2n,n) = A092956(n-1) for n>0. - Alois P. Heinz, Jun 19 2017
From Alois P. Heinz, Dec 17 2021: (Start)
Sum_{k=1..n} k * T(n,k) = A002627(n).
|Sum_{k=1..n} (-1)^k * T(n,k)| = A055596(n) for n>=1. (End)
From G. C. Greubel, Sep 06 2022: (Start)
T(n, 1) = A001710(n).
T(n, 2) = 2*A001715(n) + [n=2]/3, n >= 2.
T(n, 3) = 3*A001720(n) + [n=3]/4, n >= 3.
T(n, 4) = 4*A001725(n) + [n=4]/5, n >= 4.
T(n, n-1) = A000027(n-1).
T(n, n-2) = A005563(n-1), n >= 3. (End)
Sum_{k=0..n} (k+1) * T(n,k) = A000522(n). - Alois P. Heinz, Apr 28 2023

A157385 A partition product of Stirling_1 type [parameter k = -5] with biggest-part statistic (triangle read by rows).

Original entry on oeis.org

1, 1, 5, 1, 15, 30, 1, 105, 120, 210, 1, 425, 1800, 1050, 1680, 1, 3075, 18600, 18900, 10080, 15120, 1, 15855, 174300, 338100, 211680, 105840, 151200, 1, 123515, 2227680, 4865700, 4327680, 2540160, 1209600, 1663200, 1, 757755
Offset: 1

Author

Peter Luschny, Mar 07 2009, Mar 14 2009

Keywords

Comments

Partition product of prod_{j=0..n-2}(k-n+j+2) and n! at k = -5,
summed over parts with equal biggest part (see the Luschny link).
Underlying partition triangle is A144355.
Same partition product with length statistic is A049353.
Diagonal a(A000217(n)) = rising_factorial(5,n-1), A001720(n+3).
Row sum is A049378.

Formula

T(n,0) = [n = 0] (Iverson notation) and for n > 0 and 1 <= m <= n
T(n,m) = Sum_{a} M(a)|f^a| where a = a_1,..,a_n such that
1*a_1+2*a_2+...+n*a_n = n and max{a_i} = m, M(a) = n!/(a_1!*..*a_n!),
f^a = (f_1/1!)^a_1*..*(f_n/n!)^a_n and f_n = product_{j=0..n-2}(j-n-3).

A049460 Generalized Stirling number triangle of first kind.

Original entry on oeis.org

1, -5, 1, 30, -11, 1, -210, 107, -18, 1, 1680, -1066, 251, -26, 1, -15120, 11274, -3325, 485, -35, 1, 151200, -127860, 44524, -8175, 835, -45, 1, -1663200, 1557660, -617624, 134449, -17360, 1330, -56, 1, 19958400, -20355120, 8969148, -2231012, 342769, -33320, 2002, -68, 1
Offset: 0

Keywords

Comments

a(n,m)= ^5P_n^m in the notation of the given reference with a(0,0) := 1.
The monic row polynomials s(n,x) := sum(a(n,m)*x^m,m=0..n) which are s(n,x)= product(x-(5+k),k=0..n-1), n >= 1 and s(0,x)=1 satisfy s(n,x+y) = sum(binomial(n,k)*s(k,x)*S1(n-k,y),k=0..n), with the Stirling1 polynomials S1(n,x)=sum(A008275(n,m)*x^m, m=1..n) and S1(0,x)=1.
In the umbral calculus (see the S. Roman reference given in A048854) the s(n,x) polynomials are called Sheffer for (exp(5*t),exp(t)-1).

Examples

			{1}; {-5,1}; {30,-11,1}; {-210,107,-18,1}; ... s(2,x)= 30-11*x+x^2; S1(2,x)= -x+x^2 (Stirling1).
		

Crossrefs

Unsigned column sequences are: A001720-A001724. Row sums (signed triangle): A001715(n+3)*(-1)^n. Row sums (unsigned triangle): A001725(n+5).

Programs

  • Haskell
    a049460 n k = a049460_tabl !! n !! k
    a049460_row n = a049460_tabl !! n
    a049460_tabl = map fst $ iterate (\(row, i) ->
       (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 5)
    -- Reinhard Zumkeller, Mar 11 2014
  • Mathematica
    a[n_, m_] := Pochhammer[m+1, n-m] SeriesCoefficient[Log[1+x]^m/(1+x)^5, {x, 0, n}];
    Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2019 *)

Formula

a(n, m)= a(n-1, m-1) - (n+4)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n
Triangle (signed) = [ -5, -1, -6, -2, -7, -3, -8, -4, -9, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, ...]; triangle (unsigned) = [5, 1, 6, 2, 7, 3, 8, 4, 9, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938.
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = f(n,i,5), for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008

Extensions

Second formula corrected by Philippe Deléham, Nov 10 2008

A143493 Unsigned 4-Stirling numbers of the first kind.

Original entry on oeis.org

1, 4, 1, 20, 9, 1, 120, 74, 15, 1, 840, 638, 179, 22, 1, 6720, 5944, 2070, 355, 30, 1, 60480, 60216, 24574, 5265, 625, 39, 1, 604800, 662640, 305956, 77224, 11515, 1015, 49, 1, 6652800, 7893840, 4028156, 1155420, 203889, 22680, 1554, 60, 1, 79833600
Offset: 4

Author

Peter Bala, Aug 20 2008

Keywords

Comments

See A049459 for a signed version of the array. The unsigned 4-Stirling numbers of the first kind count the permutations of the set {1,2,...,n} into k disjoint cycles, with the restriction that the elements 1, 2, 3 and 4 belong to distinct cycles. This is the case r = 4 of the unsigned r-Stirling numbers of the first kind. For other cases see abs(A008275) (r = 1), A143491 (r = 2) and A143492 (r = 3). See A143496 for the corresponding triangle of 4-Stirling numbers of the second kind.
The theory of r-Stirling numbers of both kinds is developed in [Broder]. For details of the related 4-Lah numbers see A143499.
With offset n=0 and k=0, this is the Sheffer triangle (1/(1-x)^4,-log(1-x)) (in the umbral notation of S. Roman's book this would be called Sheffer for (exp(-4*t),1-exp(-t))). See the e.g.f given below. Compare also with the e.g.f. for the signed version A049459. - Wolfdieter Lang, Oct 10 2011
With offset n=0 and k=0: triangle T(n,k), read by rows, given by (4,1,5,2,6,3,7,4,8,5,9,6,...) DELTA (1,0,1,0,1,0,1,0,1,0,1,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 31 2011

Examples

			Triangle begins
  n\k|     4     5     6     7     8     9
  ========================================
  4  |     1
  5  |     4     1
  6  |    20     9     1
  7  |   120    74    15     1
  8  |   840   638   179    22     1
  9  |  6720  5944  2070   355    30     1
  ...
T(6,5) = 9. The 9 permutations of {1,2,3,4,5,6} with 5 cycles such that 1, 2, 3 and 4 belong to different cycles are: (1,5)(2)(3)(4)(6), (1,6)(2)(3)(4)(5), (2,5)(1)(3)(4)(6), (2,6)(1)(3)(4)(5), (3,5)(1)(2)(4)(6), (3,6)(1)(2)(4)(5), (4,5)(1)(2)(3)(6), (4,6)(1)(2)(3)(5) and (5,6)(1)(2)(3)(4).
		

Crossrefs

Cf. A001715 - A001719 (column 4 - column 8), A001720 (row sums), A008275, A049459 (signed version), A143491, A143492, A143496, A143499.

Programs

  • Maple
    with combinat: T := (n, k) -> (n-4)! * add(binomial(n-j-1,3)*abs(stirling1(j,k-4))/j!,j = k-4..n-4): for n from 4 to 13 do seq(T(n, k), k = 4..n) end do;

Formula

T(n,k) = (n-4)! * Sum_{j = k-4 .. n-4} C(n-j-1,3)*|stirling1(j,k-4)|/j!.
Recurrence relation: T(n,k) = T(n-1,k-1) + (n-1)*T(n-1,k) for n > 4, with boundary conditions: T(n,3) = T(3,n) = 0 for all n; T(4,4) = 1; T(4,k) = 0 for k > 4.
Special cases:
T(n,4) = (n-1)!/3!.
T(n,5) = (n-1)!/3!*(1/4 + ... + 1/(n-1)).
T(n,k) = sum {4 <= i_1 < ...< i_(n-k) < n} (i_1*i_2* ...*i_(n-k)). For example, T(7,5) = Sum_{4 <= i < j < 7} (i*j) = 4*5 + 4*6 + 5*6 = 74.
Row g.f.: Sum_{k = 4..n} T(n,k)*x^k = x^4*(x+4)*(x+5)* ... *(x+n-1).
E.g.f. for column (k+4): Sum_{n = k..inf} T(n+4,k+4)*x^n/n! = 1/k!*1/(1-x)^4 * (log(1/(1-x)))^k.
E.g.f.: (1/(1-t))^(x+4) = Sum_{n = 0..inf} Sum_{k = 0..n} T(n+4,k+4)*x^k*t^n/n! = 1 + (4+x)*t/1! + (20+9*x+x^2)*t^2/2! + .... This array is the matrix product St1 * P^3, where St1 denotes the lower triangular array of unsigned Stirling numbers of the first kind, abs(A008275) and P denotes Pascal's triangle, A007318. The row sums are n!/4! ( A001720 ). The alternating row sums are (n-2)!/2!.
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n+4,i) = |f(n,i,3)|, for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008

A144698 Triangle of 4-Eulerian numbers.

Original entry on oeis.org

1, 1, 4, 1, 13, 16, 1, 32, 113, 64, 1, 71, 531, 821, 256, 1, 150, 2090, 6470, 5385, 1024, 1, 309, 7470, 40510, 65745, 33069, 4096, 1, 628, 25191, 221800, 612295, 592884, 194017, 16384, 1, 1267, 81853, 1113919, 4835875, 7843369, 4915423, 1101157, 65536
Offset: 4

Author

Peter Bala, Sep 19 2008

Keywords

Comments

This is the case r = 4 of the r-Eulerian numbers, denoted by A(r;n,k), defined as follows. Let [n] denote the ordered set {1,2,...,n} and let r be a nonnegative integer. Let Permute(n,n-r) denote the set of injective maps p:[n-r] -> [n], which we think of as permutations of n numbers taken n-r at a time. Clearly, |Permute(n,n-r)| = n!/r!. We say that the permutation p has an excedance at position i, 1 <= i <= n-r, if p(i) > i. Then the r-Eulerian number A(r;n,k) is defined as the number of permutations in Permute(n,n-r) with k excedances. Thus the 4-Eulerian numbers are the number of permutations in Permute(n,n-4) with k excedances. For other cases see A008292 (r = 0 and r = 1), A144696 (r = 2), A144697 (r = 3) and A144699 (r = 5).
An alternative interpretation of the current array due to [Strosser] involves the 4-excedance statistic of a permutation (see also [Foata & Schutzenberger, Chapter 4, Section 3]). We define a permutation p in Permute(n,n-4) to have a 4-excedance at position i (1 <= i <= n-4) if p(i) >= i + 4.
Given a permutation p in Permute(n,n-4), define ~p to be the permutation in Permute(n,n-4) that takes i to n+1 - p(n-i-3). The map ~ is a bijection of Permute(n,n-4) with the property that if p has (resp. does not have) an excedance in position i then ~p does not have (resp. has) a 4-excedance at position n-i-3. Hence ~ gives a bijection between the set of permutations with k excedances and the set of permutations with (n-k) 4-excedances. Thus reading the rows of this array in reverse order gives a triangle whose entries are the number of permutations in Permute(n,n-4) with k 4-excedances.
Example: Represent a permutation p:[n-4] -> [n] in Permute(n,n-4) by its image vector (p(1),...,p(n-4)). In Permute(10,6) the permutation p = (1,2,4,10,3,6) does not have an excedance in the first two positions (i = 1 and 2) or in the final two positions (i = 5 and 6). The permutation ~p = (5,8,1,7,9,10) has 4-excedances only in the first two positions and the final two positions.

Examples

			Triangle begins
  ===+=============================================
  n\k|  0      1      2      3      4      5      6
  ===+=============================================
   4 |  1
   5 |  1      4
   6 |  1     13     16
   7 |  1     32    113     64
   8 |  1     71    531    821    256
   9 |  1    150   2090   6470   5385   1024
  10 |  1    309   7470  40510  65745  33069   4096
  ...
T(6,1) = 13: We represent a permutation p:[n-4] -> [n] in Permute(n,n-4) by its image vector (p(1),...,p(n-4)). The 13 permutations in Permute(6,2) having 1 excedance are (1,3), (1,4), (1,5), (1,6), (3,2), (4,2), (5,2), (6,2), (2,1), (3,1), (4,1), (5,1) and (6,1).
		

References

  • R. Strosser, Séminaire de théorie combinatoire, I.R.M.A., Université de Strasbourg, 1969-1970.

Crossrefs

Cf. A001720 (row sums), A000302 (right diagonal).

Programs

  • Magma
    m:=4; [(&+[(-1)^(k-j)*Binomial(n+1,k-j)*Binomial(j+m,m-1)*(j+1)^(n-m+1): j in [0..k]])/m: k in [0..n-m], n in [m..m+10]]; // G. C. Greubel, Jun 04 2022
    
  • Maple
    with(combinat):
    T:= (n,k) -> 1/4!*add((-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-3)*(j+2)*(j+3)*(j+4),j = 0..k):
    for n from 4 to 12 do
    seq(T(n,k),k = 0..n-4)
    end do;
  • Mathematica
    T[n_, k_] /; 0 < k <= n-4 := T[n, k] = (k+1) T[n-1, k] + (n-k) T[n-1, k-1];
    T[, 0] = 1; T[, _] = 0;
    Table[T[n, k], {n, 4, 12}, {k, 0, n-4}] // Flatten (* Jean-François Alcover, Nov 11 2019 *)
  • SageMath
    m=4 # A144698
    def T(n,k): return (1/m)*sum( (-1)^(k-j)*binomial(n+1,k-j)*binomial(j+m,m-1)*(j+1)^(n-m+1) for j in (0..k) )
    flatten([[T(n,k) for k in (0..n-m)] for n in (m..m+10)]) # G. C. Greubel, Jun 04 2022

Formula

T(n,k) = (1/4!)*Sum_{j = 0..k} (-1)^(k-j)*binomial(n+1,k-j)*(j+1)^(n-3)*(j+2)*(j+3)*(j+4).
T(n,n-k) = (1/4!)*Sum_{j = 4..k} (-1)^(k-j)*binomial(n+1,k-j)*j^(n-3)*(j-1)*(j-2)*(j-3).
Recurrence relation:
T(n,k) = (k + 1)*T(n-1,k) + (n-k)*T(n-1,k-1) with boundary conditions T(n,0) = 1 for n >= 4, T(4,k) = 0 for k >= 1. Special cases: T(n,n-4) = 4^(n-4); T(n,n-5) = 5^(n-3) - 4^(n-3) - (n-3)*4^(n-4).
E.g.f. (with suitable offsets): 1/4*[(1 - x)/(1 - x*exp(t - t*x))]^4 = 1/4 + x*t + (x + 4*x^2)*t^2/2! + (x + 13*x^2 + 16*x^3)*t^3/3! + ... .
The row generating polynomials R_n(x) satisfy the recurrence R_(n+1)(x) = (n*x + 1)*R_n(x) + x*(1 - x)*d/dx(R_n(x)) with R_4(x) = 1. It follows that the polynomials R_n(x) for n >= 5 have only real zeros (apply Corollary 1.2. of [Liu and Wang]).
The (n+3)-th row generating polynomial = (1/4!)*Sum_{k = 1..n} (k+3)!*Stirling2(n,k)*x^(k-1)*(1-x)^(n-k).
For n >= 4,
1/4*(x*d/dx)^(n-3) (1/(1-x)^4) = x/(1-x)^(n+1) * Sum_{k = 0..n-4} T(n,k)*x^k,
1/4*(x*d/dx)^(n-3) (x^4/(1-x)^4) = 1/(1-x)^(n+1) * Sum_{k = 4..n} T(n,n-k)*x^k,
1/(1-x)^(n+1) * Sum {k = 0..n-4} T(n,k)*x^k = (1/4!) * Sum_{m = 0..inf} (m+1)^(n-3)*(m+2)*(m+3)*(m+4)*x^m,
1/(1-x)^(n+1) * Sum {k = 4..n} T(n,n-k)*x^k = (1/4!) * Sum_{m = 4..inf} m^(n-3)*(m-1)*(m-2)*(m-3)*x^m,
Worpitzky-type identities:
Sum_{k = 0..n-4} T(n,k)*binomial(x+k,n) = (1/4!)*x^(n-3)*(x-1)*(x-2)*(x-3).
Sum_{k = 4..n} T(n,n-k)* binomial(x+k,n) = (1/4!)*(x+1)^(n-3)*(x+2)*(x+3)*(x+4).
Relation with Stirling numbers (Frobenius-type identities):
T(n+3,k-1) = (1/4!) * Sum_{j = 0..k} (-1)^(k-j)* (j+3)!* binomial(n-j,k-j)*Stirling2(n,j) for n,k >= 1;
T(n+3,k-1) = 1/4! * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+3)!* binomial(n-j,k)*S(4;n+4,j+4) for n,k >= 1 and
T(n+4,k) = 1/4! * Sum_{j = 0..n-k} (-1)^(n-k-j)*(j+4)!* binomial(n-j,k)*S(4;n+4,j+4) for n,k >= 0, where S(4;n,k) denotes the 4-Stirling numbers of the second kind A143496(n,k).
For n >=4, the shifted row polynomial t*R(n,t) = (1/4)*D^(n-3)(f(x,t)) evaluated at x = 0, where D is the operator (1-t)*(1+x)*d/dx and f(x,t) = (1+x*t/(t-1))^(-4). - Peter Bala, Apr 22 2012

A303697 Number T(n,k) of permutations p of [n] whose difference between sum of up-jumps and sum of down-jumps equals k; triangle T(n,k), n>=0, min(0,1-n)<=k<=max(0,n-1), read by rows.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 1, 4, 5, 4, 5, 4, 1, 1, 11, 19, 19, 20, 19, 19, 11, 1, 1, 26, 82, 100, 101, 100, 101, 100, 82, 26, 1, 1, 57, 334, 580, 619, 619, 620, 619, 619, 580, 334, 57, 1, 1, 120, 1255, 3394, 4339, 4420, 4421, 4420, 4421, 4420, 4339, 3394, 1255, 120, 1
Offset: 0

Author

Alois P. Heinz, Apr 28 2018

Keywords

Comments

An up-jump j occurs at position i in p if p_{i} > p_{i-1} and j is the index of p_i in the increasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are larger than p_{i-1}. A down-jump j occurs at position i in p if p_{i} < p_{i-1} and j is the index of p_i in the decreasingly sorted list of those elements in {p_{i}, ..., p_{n}} that are smaller than p_{i-1}. First index in the lists is 1 here.

Examples

			Triangle T(n,k) begins:
:                               1                             ;
:                               1                             ;
:                          1,   0,   1                        ;
:                     1,   1,   2,   1,   1                   ;
:                1,   4,   5,   4,   5,   4,   1              ;
:           1,  11,  19,  19,  20,  19,  19,  11,   1         ;
:      1,  26,  82, 100, 101, 100, 101, 100,  82,  26,  1     ;
:  1, 57, 334, 580, 619, 619, 620, 619, 619, 580, 334, 57, 1  ;
		

Programs

  • Maple
    b:= proc(u, o) option remember; expand(`if`(u+o=0, 1,
          add(b(u-j, o+j-1)*x^(-j), j=1..u)+
          add(b(u+j-1, o-j)*x^( j), j=1..o)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=ldegree(p)..degree(p)))(
            `if`(n=0, 1, add(b(j-1, n-j), j=1..n))):
    seq(T(n), n=0..12);
  • Mathematica
    b[u_, o_] := b[u, o] = Expand[If[u+o == 0, 1,
         Sum[b[u-j, o+j-1] x^-j, {j, 1, u}] +
         Sum[b[u+j-1, o-j] x^j, {j, 1, o}]]];
    T[0] = {1};
    T[n_] := x^n Sum[b[j-1, n-j], {j, 1, n}] // CoefficientList[#, x]& // Rest;
    T /@ Range[0, 12] // Flatten (* Jean-François Alcover, Feb 20 2021, after Alois P. Heinz *)

Formula

T(n,0) = A153229(n) for n > 0.
T(n,1) = A005165(n-1) for n > 0.
T(n+1,n-1) = A000295(n).
T(n,k) = T(n,-k).
Sum_{k=0..n-1} k^2 * T(n,k) = A001720(n+2) for n>1.

A062260 Third (unsigned) column sequence of triangle A062140 (generalized a=4 Laguerre).

Original entry on oeis.org

1, 21, 336, 5040, 75600, 1164240, 18627840, 311351040, 5448643200, 99891792000, 1917922406400, 38532804710400, 809188898918400, 17739910476288000, 405483668029440000, 9650511299100672000
Offset: 0

Author

Wolfdieter Lang, Jun 19 2001

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n+2)*Binomial(n+6, 6)/2: n in [0..30]]; // G. C. Greubel, Feb 06 2018
  • Maple
    a:=n->sum((n-j)*n!/6!, j=5..n): seq(a(n), n=6..21); # Zerinvary Lajos, Apr 29 2007
  • Mathematica
    Table[(n + 2)! Binomial[n + 6, 6]/2, {n, 0, 20}] (* Wesley Ivan Hurt, Jan 23 2017 *)
  • PARI
    { f=1; for (n=0, 100, f*=n + 2; write("b062260.txt", n, " ", f*binomial(n + 6, 6)/2) ) } \\ Harry J. Smith, Aug 03 2009
    
  • Sage
    [binomial(n,6)*factorial (n-4)/2 for n in range(6, 22)] # Zerinvary Lajos, Jul 07 2009
    

Formula

E.g.f.: (1+12*x+15*x^2)/(1-x)^9.
a(n) = A062140(n+2, 2) = (n+2)!*binomial(n+6, 6)/2!.
If we define f(n,i,x) = Sum_{k=1..n} Sum_{j=i..k} binomial(k,j) * Stirling1(n,k) * Stirling2(j,i) * x^(k-j) then a(n-2) = (-1)^n * f(n,2,-7), (n>=2). - Milan Janjic, Mar 01 2009
a(n) = binomial(n,6)*(n-4)!/2, n >= 6. - Zerinvary Lajos, Jul 07 2009

A144891 Lower triangular array called S1hat(5) related to partition number array A144890.

Original entry on oeis.org

1, 5, 1, 30, 5, 1, 210, 55, 5, 1, 1680, 360, 55, 5, 1, 15120, 3630, 485, 55, 5, 1, 151200, 29820, 4380, 485, 55, 5, 1, 1663200, 321300, 39570, 5005, 485, 55, 5, 1, 19958400, 3225600, 421800, 43320, 5005, 485, 55, 5, 1, 259459200, 38808000, 4265100, 470550, 46445, 5005
Offset: 1

Author

Wolfdieter Lang Oct 09 2008

Keywords

Comments

If in the partition array M31hat(5):=A144890 entries with the same parts number m are summed one obtains this triangle of numbers S1hat(5). In the same way the signless Stirling1 triangle |A008275| is obtained from the partition array M_2 = A036039.
The first columns are A001720(n+3)=(n+3)!/4!, A144893, A144894,...

Examples

			[1];[5,1];[30,5,1];[210,55,5,1];[1680,360,55,5,1];...
		

Crossrefs

A144892 (row sums).

Formula

a(n,m)=sum(product(|S1(5;j,1)|^e(n,m,q,j),j=1..n),q=1..p(n,m)) if n>=m>=1, else 0. Here p(n,m)=A008284(n,m), the number of m parts partitions of n and e(n,m,q,j) is the exponent of j in the q-th m part partition of n. |S1(5,n,1)|= A049353(n,1) = A001720(n+3) = (n+3)!/4!.

A161742 Third left hand column of the RSEG2 triangle A161739.

Original entry on oeis.org

1, 4, 13, 30, -14, -504, 736, 44640, -104544, -10644480, 33246720, 5425056000, -20843695872, -5185511654400, 23457840537600, 8506857655296000, -44092609863966720, -22430879475779174400, 130748316971139072000
Offset: 2

Author

Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009

Keywords

Crossrefs

Equals third left hand column of A161739 (RSEG2 triangle).
Other left hand columns are A129825 and A161743.
A008955 is a central factorial number triangle.
A028246 is Worpitzky's triangle.
A001710 (n!/2!), A001715 (n!/3!), A001720 (n!/4!), A001725 (n!/5!), A001730 (n!/6!), A049388 (n!/7!), A049389 (n!/8!), A049398 (n!/9!), A051431 (n!/10!) appear in Maple program.

Programs

  • Maple
    nmax:=21; for n from 0 to nmax do A008955(n,0):=1 end do: for n from 0 to nmax do A008955(n,n):=(n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n,m):= A008955(n-1,m-1)*n^2+A008955(n-1,m) end do: end do: for n from 1 to nmax do A028246(n,1):=1 od: for n from 1 to nmax do A028246(n,n):=(n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n,m):=m*A028246(n-1,m)+(m-1)*A028246(n-1,m-1) od: od: for n from 2 to nmax do a(n):=sum(((-1)^k/((k+1)!*(k+2)!)) *(n!)*A028246(n,k+2)* A008955(k+1,k),k=0..n-2) od: seq(a(n),n=2..nmax);

Formula

a(n) = sum(((-1)^k/((k+1)!*(k+2)!))*(n!)*A028246(n, k+2)*A008955(k+1, k), k=0..n-2)

A161743 Fourth left hand column of the RSEG2 triangle A161739.

Original entry on oeis.org

1, 10, 73, 425, 1561, -2856, -73520, 380160, 15376416, -117209664, -7506967104, 72162155520, 7045087741056, -80246202992640, -11448278791372800, 149576169325363200, 30017051616972275712, -440857664887810867200
Offset: 3

Author

Johannes W. Meijer & Nico Baken (n.h.g.baken(AT)tudelft.nl), Jun 18 2009

Keywords

Crossrefs

Equals fourth left hand column of A161739 (RSEG2 triangle).
Other left hand columns are A129825 and A161742.
A008955 is a central factorial number triangle.
A028246 is Worpitzky's triangle.
A001710 (n!/2!), A001715 (n!/3!), A001720 (n!/4!), A001725 (n!/5!), A001730 (n!/6!), A049388 (n!/7!), A049389 (n!/8!), A049398 (n!/9!), A051431 (n!/10!) appear in Maple program.

Programs

  • Maple
    nmax:=21; for n from 0 to nmax do A008955(n,0):=1 end do: for n from 0 to nmax do A008955(n,n):=(n!)^2 end do: for n from 1 to nmax do for m from 1 to n-1 do A008955(n,m):= A008955(n-1,m-1)*n^2+A008955(n-1,m) end do: end do: for n from 1 to nmax do A028246(n,1):=1 od: for n from 1 to nmax do A028246(n,n):=(n-1)! od: for n from 3 to nmax do for m from 2 to n-1 do A028246(n,m):=m*A028246(n-1,m)+(m-1)*A028246(n-1,m-1) od: od: for n from 3 to nmax do a(n) := sum(((-1)^k/((k+2)!*(k+3)!))*(n!)*A028246(n,k+3)* A008955(k+2,k), k=0..n-3) od: seq(a(n),n=3..nmax);

Formula

a(n) = sum(((-1)^k/((k+2)!*(k+3)!))*(n!)*A028246(n, k+3)*A008955(k+2, k), k = 0..n-3).
Previous Showing 21-30 of 45 results. Next