A350079
Triangle read by rows: T(n,k) is the number of endofunctions on [n] whose second-smallest component has size exactly k; n >= 0, 0 <= k <= max(0,n-1).
Original entry on oeis.org
1, 1, 3, 1, 17, 1, 9, 142, 19, 27, 68, 1569, 201, 135, 510, 710, 21576, 2921, 3465, 2890, 6390, 9414, 355081, 50233, 63630, 20230, 84490, 98847, 151032, 6805296, 1004599, 1196181, 918680, 705740, 1493688, 1812384, 2840648, 148869153, 22872097, 26904339, 23943752, 6351660, 28072548, 30810528, 38348748, 61247664
Offset: 0
Triangle begins:
1;
1;
3, 1;
17, 1, 9;
142, 19, 27, 68;
1569, 201, 135, 510, 710;
21576, 2921, 3465, 2890, 6390, 9414;
355081, 50233, 63630, 20230, 84490, 98847, 151032;
...
Column 0 gives gives 1 together with
A001865.
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^subs(infinity=0, l)[2],
add(b(n-i, sort([l[], i])[1..2])*g(i)*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [infinity$2])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 17 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^(l /. Infinity -> 0)[[2]], Sum[b[n - i, Sort[Append[l, i]][[1;;2]]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {Infinity, Infinity}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350080
Irregular triangle read by rows: T(n,k) is the number of endofunctions on [n] whose third-largest component has size exactly k; n >= 0, 0 <= k <= floor(n/3).
Original entry on oeis.org
1, 1, 4, 26, 1, 237, 19, 2789, 336, 40270, 5981, 405, 689450, 115193, 18900, 13657756, 2459955, 659505, 307348641, 58366045, 20330163, 1375640, 7745565616, 1530739594, 623758590, 99936200, 216114310994, 44076571672, 19795671225, 5325116720
Offset: 0
Triangle begins:
1;
1;
4;
26, 1;
237, 19;
2789, 336;
40270, 5981, 405;
689450, 115193, 18900;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add(g(i)*
b(n-i, sort([l[], i])[-3..-1])*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$3])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 17 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[g[i]*b[n - i, Sort[ Append[l, i]][[-3 ;; -1]]]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350081
Triangle read by rows: T(n,k) is the number of endofunctions on [n] whose third-smallest component has size exactly k; n >= 0, 0 <= k <= max(0,n-2).
Original entry on oeis.org
1, 1, 4, 26, 1, 237, 1, 18, 2789, 31, 135, 170, 40270, 386, 810, 3060, 2130, 689450, 6574, 13545, 36295, 44730, 32949, 13657756, 129291, 327285, 323680, 944300, 790776, 604128, 307348641, 2910709, 7207137, 6602120, 15476580, 18780930, 16311456, 12782916
Offset: 0
Triangle begins:
1;
1;
4;
26, 1;
237, 1, 18;
2789, 31, 135, 170;
40270, 386, 810, 3060, 2130;
689450, 6574, 13545, 36295, 44730, 32949;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^subs(infinity=0, l)[3],
add(b(n-i, sort([l[], i])[1..3])*g(i)*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [infinity$3])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 17 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^(l /. Infinity -> 0)[[3]], Sum[b[n - i, Sort[Append[l, i]][[1 ;; 3]]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {Infinity, Infinity, Infinity}]}, Table[ Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350275
Irregular triangle read by rows: T(n,k) is the number of endofunctions on [n] whose fourth-largest component has size exactly k; n >= 0, 0 <= k <= floor(n/4).
Original entry on oeis.org
1, 1, 4, 27, 255, 1, 3094, 31, 45865, 791, 803424, 20119, 16239720, 528991, 8505, 372076163, 14689441, 654885, 9529560676, 435580164, 34859160, 269819334245, 13846282341, 1646054025, 8369112382488, 471890017358, 73811825010, 1286223400
Offset: 0
Triangle begins:
1;
1;
4;
27;
255, 1;
3094, 31;
45865, 791;
803424, 20119;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^l[1], add(g(i)*
b(n-i, sort([l[], i])[-4..-1])*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$4])):
seq(T(n), n=0..14); # Alois P. Heinz, Dec 22 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^l[[1]], Sum[g[i]*b[n - i, Sort[ Append[l, i]][[-4 ;; -1]]]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, {0, 0, 0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350276
Irregular triangle read by rows: T(n,k) is the number of endofunctions on [n] whose fourth-smallest component has size exactly k; n >= 0, 0 <= k <= max(0,n-3).
Original entry on oeis.org
1, 1, 4, 27, 255, 1, 3094, 1, 30, 45865, 46, 405, 340, 803424, 659, 3780, 10710, 4970, 16239720, 12867, 48405, 209440, 178920, 87864, 372076163, 284785, 1225665, 3005940, 5457060, 3558492, 1812384, 9529560676, 7126384, 32262300, 51205700, 135084600, 120593340, 81557280, 42609720
Offset: 0
Triangle begins:
1;
1;
4;
27;
255, 1;
3094, 1, 30;
45865, 46, 405, 340;
803424, 659, 3780, 10710, 4970;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, l) option remember; `if`(n=0, x^subs(infinity=0, l)[4],
add(b(n-i, sort([l[], i])[1..4])*g(i)*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [infinity$4])):
seq(T(n), n=0..12); # Alois P. Heinz, Dec 22 2021
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, l_] := b[n, l] = If[n == 0, x^(l /. Infinity -> 0)[[4]], Sum[b[n - i, Sort[Append[l, i]][[1 ;; 4]]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, Table[Infinity, {4}]]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
A350212
Number T(n,k) of endofunctions on [n] with exactly k isolated fixed points; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 3, 0, 1, 17, 9, 0, 1, 169, 68, 18, 0, 1, 2079, 845, 170, 30, 0, 1, 31261, 12474, 2535, 340, 45, 0, 1, 554483, 218827, 43659, 5915, 595, 63, 0, 1, 11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1, 262517615, 102030777, 19961388, 2625924, 261954, 21294, 1428, 108, 0, 1
Offset: 0
T(3,1) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213.
Triangle T(n,k) begins:
1;
0, 1;
3, 0, 1;
17, 9, 0, 1;
169, 68, 18, 0, 1;
2079, 845, 170, 30, 0, 1;
31261, 12474, 2535, 340, 45, 0, 1;
554483, 218827, 43659, 5915, 595, 63, 0, 1;
11336753, 4435864, 875308, 116424, 11830, 952, 84, 0, 1;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
b(n-i, m+`if`(i=1, 1, 0))*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
seq(T(n), n=0..10);
# second Maple program:
A350212 := (n,k)-> add((-1)^(j-k)*binomial(j,k)*binomial(n,j)*(n-j)^(n-j), j=0..n):
seq(print(seq(A350212(n, k), k=0..n)), n=0..9); # Mélika Tebni, Nov 24 2022
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]*
b[n - i, m + If[i == 1, 1, 0]]*Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, 0]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 11 2022, after Alois P. Heinz *)
A065456
Number of functions on n labeled nodes whose representation as a digraph has two components.
Original entry on oeis.org
0, 1, 9, 95, 1220, 18694, 334369, 6852460, 158479488, 4085349936, 116193701393, 3615197586912, 122165572502324, 4456126288810624, 174520484866919385, 7304657490838627072, 325420940777809245152, 15374940186972235659264, 767898500931828204443769
Offset: 1
a(3)=9 since, on {1,2,3}, these functions and no others have two components: (3->1->3)(2->2), (1->3->1)(2->2), (3->2->2)(1->1), (2->3->2)(1->1), (2->1->2)(3->3), (1->2->1)(3->3), (1->2->2)(3->3), (1->3->3)(2->2) and (2->3->3)(1->1).
See
A001865 for the numbers of one-component (i.e. connected) functions on n labeled nodes.
-
katz := n->(n-1)!*sum(n^k/k!,k=0..n-1); A001865 := []; for m from 1 to 30 do A001865 := [op(A001865),katz(m)] od; A065456 := []; for n from 1 to 29 do unequal_splits := sum(binomial(n,k)*A001865[k]*A001865[n-k],k=1..floor((n-1)/2)); if (n mod 2=0) then A065456 := [op(A065456),unequal_splits+binomial(n,n/2)*(A001865[n/2])^2/2] fi; if (n mod 2=1) then A065456 := [op(A065456),unequal_splits] fi od; print(A065456); #if the connected components are of equal size, we correct the double counting. The Katz reference is at A001865. - Len Smiley, Nov 26 2001
# second Maple program:
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
a:= n-> add(binomial(n, i)*g(i)*g(n-i)/2, i=0..n):
seq(a(n), n=1..20); # Alois P. Heinz, Dec 19 2021
-
t=Sum[n^(n-1)x^n/n!,{n,1,20}]; Range[0, 20]! CoefficientList[Series[Log[1/(1 - t)]^2/2, {x, 0, 20}],
x] (* Geoffrey Critzer, Oct 06 2011 *)
Rest[CoefficientList[Series[Log[1+LambertW[-x]]^2, {x, 0, 20}], x]/2* Range[0, 20]!] (* Vaclav Kotesovec, Oct 05 2013 *)
-
x='x+O('x^20); concat([0], Vec(serlaplace(log(1+lambertw(-x))^2/2 ))) \\ G. C. Greubel, Jan 18 2018
A209324
Triangular array read by rows: T(n,k) is the number of endofunctions f:{1,2,...,n}-> {1,2,...,n} whose largest component has exactly k nodes; n>=1, 1<=k<=n.
Original entry on oeis.org
1, 1, 3, 1, 9, 17, 1, 45, 68, 142, 1, 165, 680, 710, 1569, 1, 855, 6290, 8520, 9414, 21576, 1, 3843, 47600, 134190, 131796, 151032, 355081, 1, 21819, 481712, 1838900, 2372328, 2416512, 2840648, 6805296, 1, 114075, 5025608, 21488292, 50609664, 48934368, 51131664, 61247664, 148869153
Offset: 1
Triangle T(n,k) begins:
1;
1, 3;
1, 9, 17;
1, 45, 68, 142;
1, 165, 680, 710, 1569;
1, 855, 6290, 8520, 9414, 21576;
1, 3843, 47600, 134190, 131796, 151032, 355081;
1, 21819, 481712, 1838900, 2372328, 2416512, 2840648, 6805296;
...
- R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, 1996, Chapter 8.
- Alois P. Heinz, Rows n = 1..141, flattened
- Steven Finch, Permute, Graph, Map, Derange, arXiv:2111.05720 [math.CO], 2021.
- D. Panario and B. Richmond, Exact largest and smallest size of components, Algorithmica, 31 (2001), 413-432.
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
b(n-i, max(m, i))*binomial(n-1, i-1), i=1..n))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n, 0)):
seq(T(n), n=1..12); # Alois P. Heinz, Dec 16 2021
-
nn=8;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];c=Log[1/(1-t)];b=Drop[Range[0,nn]!CoefficientList[Series[c,{x,0,nn}],x],1];f[list_]:=Select[list,#>0&];Map[f,Drop[Transpose[Table[Range[0,nn]!CoefficientList[Series[ Exp[Sum[b[[i]]x^i/i!,{i,1,n+1}]]-Exp[Sum[b[[i]]x^i/i!,{i,1,n}]],{x,0,nn}],x],{n,0,nn-1}]],1]]//Grid
(* Second program: *)
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[g[i]*b[n - i, Max[m, i]]* Binomial[n - 1, i - 1], {i, 1, n}]];
T[n_] := With[{p = b[n, 0]}, Table[Coefficient[p, x, i], {i, 1, n}]];
Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Dec 30 2021, after Alois P. Heinz *)
A350134
Number of endofunctions on [n] with at least one isolated fixed point.
Original entry on oeis.org
0, 1, 1, 10, 87, 1046, 15395, 269060, 5440463, 124902874, 3208994379, 91208536112, 2841279322871, 96258245162678, 3523457725743059, 138573785311560916, 5827414570508386335, 260928229315498155314, 12393729720071855683739, 622422708333615857463608
Offset: 0
a(3) = 10: 123, 122, 133, 132, 121, 323, 321, 113, 223, 213.
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, t) option remember; `if`(n=0, t, add(g(i)*
b(n-i, `if`(i=1, 1, t))*binomial(n-1, i-1), i=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23);
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, t_] := b[n, t] = If[n == 0, t, Sum[g[i]*
b[n - i, If[i == 1, 1, t]]*Binomial[n - 1, i - 1], {i, 1, n}]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz *)
A350157
Total number of nodes in the smallest connected component summed over all endofunctions on [n].
Original entry on oeis.org
0, 1, 7, 61, 709, 9911, 167111, 3237921, 71850913, 1780353439, 49100614399, 1482061739423, 48873720208853, 1740252983702871, 66793644836081827, 2740470162691675711, 120029057782404141841, 5575505641199441262767, 274412698693082818767335, 14236421024010426118259883
Offset: 0
a(2) = 7 = 2 + 2 + 1 + 2: 11, 22, 12, 21.
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(
b(n-i, min(m, i))*g(i)*binomial(n-1, i-1), i=1..n))
end:
a:= n-> (p-> add(coeff(p, x, i)*i, i=0..n))(b(n,n)):
seq(a(n), n=0..23);
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, m_] := b[n, m] = If[n == 0, x^m, Sum[
b[n - i, Min[m, i]]*g[i]*Binomial[n - 1, i - 1], {i, 1, n}]];
a[n_] := Function[p, Sum[Coefficient[p, x, i]*i, {i, 0, n}]][b[n, n]];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Apr 27 2022, after Alois P. Heinz *)
Comments