A185391
a(n) = Sum_{k=0..n} A185390(n,k) * k.
Original entry on oeis.org
0, 1, 10, 114, 1556, 25080, 468462, 9971920, 238551336, 6339784320, 185391061010, 5917263922944, 204735466350780, 7633925334590464, 305188474579874550, 13023103577435351040, 590850477768105474128, 28401410966866912051200, 1441935117039649859464986
Offset: 0
-
nn=20; tx=Sum[n^(n-1) x^n/n!,{n,1,nn}]; txy=Sum[n^(n-1) (x y)^n/n!, {n,1,nn}]; f[list_] := Select[list, #>0&];
D[Range[0,nn]! CoefficientList[Series[Exp[tx]/(1-txy),{x,0,nn}],x],y]/.y->1
-
{a(n) = (n+1)^(n+1)-sum(k=1, n+1, binomial(n+1, k)*k^k*(n+1-k)^(n+1-k))/(n+1)} \\ Seiichi Manyama, Jun 01 2019
A201685
Triangular array read by rows. T(n,k) is the number of connected endofunctions on {1,2,...,n} that have exactly k nodes in the unique cycle of its digraph representation.
Original entry on oeis.org
1, 2, 1, 9, 6, 2, 64, 48, 24, 6, 625, 500, 300, 120, 24, 7776, 6480, 4320, 2160, 720, 120, 117649, 100842, 72030, 41160, 17640, 5040, 720, 2097152, 1835008, 1376256, 860160, 430080, 161280, 40320, 5040, 43046721, 38263752, 29760696, 19840464, 11022480, 4898880, 1632960, 362880, 40320
Offset: 1
Triangle begins as:
1;
2, 1;
9, 6, 2;
64, 48, 24, 6;
625, 500, 300, 120, 24;
7776, 6480, 4320, 2160, 720, 120;
-
Flat(List([1..12], n-> List([1..n], k-> Binomial(n-1,k-1)*n^(n-k)*Factorial(k-1) ))); # G. C. Greubel, Jan 08 2020
-
[Binomial(n-1,k-1)*n^(n-k)*Factorial(k-1): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 08 2020
-
T:= (n, k)-> binomial(n-1, k-1)*n^(n-k)*(k-1)!:
seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Aug 14 2013
-
f[list_] := Select[list, # > 0 &]; t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Map[f, Drop[Range[0, 10]! CoefficientList[Series[Log[1/(1 - y t)], {x, 0, 10}], {x, y}], 1]] // Grid
-
T(n,k) = binomial(n-1,k-1)*n^(n-k)*(k-1)!; \\ G. C. Greubel, Jan 08 2020
-
[[binomial(n-1,k-1)*n^(n-k)*factorial(k-1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Jan 08 2020
A209327
Total number of nodes in the largest connected component of a functional digraph summed over all endofunctions f:{1,2,...,n}-> {1,2,...,n}.
Original entry on oeis.org
1, 7, 70, 863, 13056, 231187, 4737986, 109531991, 2835638008, 80950287311, 2533758258912, 86089196479255, 3161596017956936, 124590870125959343, 5251666647713483356, 235497961945975068767, 11205025852314462333408, 563351626162952600815087, 29864689571162209608920060, 1663796497123214306448307031
Offset: 1
- R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison and Welsey, 1996, Chapter 8.
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, m) option remember; `if`(n=0, x^m, add(g(i)*
b(n-i, max(m, i))*binomial(n-1, i-1), i=1..n))
end:
a:= n-> (p-> add(coeff(p, x, i)*i, i=1..n))(b(n, 0)):
seq(a(n), n=1..20); # Alois P. Heinz, Dec 17 2021
-
nn=20;g[list_]:= Sum[list[[i]]*i,{i,1,Length[list]}];t=Sum[n^(n-1)x^n/n!,{n,1,nn}];c=Log[1/(1-t)];b=Drop[Range[0,nn]!CoefficientList[Series[c,{x,0,nn}],x],1];f[list_]:=Select[list,#>0&];Map[g,Map[ f,Drop[Transpose[Table[Range[0,nn]!CoefficientList[Series[ Exp[Sum[b[[i]]x^i/i!,{i,1,n+1}]]-Exp[Sum[b[[i]]x^i/i!,{i,1,n}]],{x,0,nn}],x],{n,0,nn-1}]],1]]]
A036360
a(n) = Sum_{k=1..n} n! * n^(n-k+1) / (n-k)!.
Original entry on oeis.org
0, 1, 12, 153, 2272, 39225, 776736, 17398969, 435538944, 12058401393, 366021568000, 12090393761721, 431832459644928, 16585599200808937, 681703972229640192, 29858718555221585625, 1388451967046195347456, 68316647610168842824161, 3546179063131198669848576, 193670918442059606406896473
Offset: 0
Example: Consider the map [1,2,3,4] -> [2,3,4,4]. The trajectory of node one is [1,2,3,4]. Hence the tail length is three and the cycle size is one, a fixed point.
- F. Harary and E. Palmer, Graphical Enumeration, (1973), p. 30, Exercise 1.15a.
- P. Flajolet and A. Odlyzko, Random Mapping Statistics, INRIA RR 1114.
-
a := proc(n) local k; add(n!*n^(n-k+1)/(n-k)!, k=0..n); end;
# Alternative, e.g.f.:
T := -LambertW(-x): egf := (T + T^2)/(1 - T)^4: ser := series(egf, x, 22):
seq(n!*coeff(ser, x, n), n = 0..19); # Peter Luschny, Jul 20 2024
-
Table[Sum[n!*n^(n-k+1)/(n-k)!, {k, 1, n}], {n, 0, 19}] (* James C. McMahon, Feb 07 2024 *)
a[n_] := n E^n Gamma[n + 1, n] - n^(n + 1);
Table[a[n], {n, 0, 19}] (* Peter Luschny, Jul 20 2024 *)
-
a(n) = sum(k=1, n, n! * n^(n-k+1) / (n-k)!) \\ Andrew Howroyd, Jan 06 2024
-
def a(n):
total_sum = 0
for k in range(1, n + 1):
term = (math.factorial(n) / math.factorial(n - k))*(k**2)*(n**(n - k))
total_sum += term
return total_sum
# Brian P Hawkins, Jan 06 2024
Offset set to 0 and a(0) = 0 prepended by
Marko Riedel, Jul 20 2024
A323673
Expansion of e.g.f. log(1 - LambertW(-x)*(2 + LambertW(-x))/2).
Original entry on oeis.org
0, 1, 0, 2, 7, 69, 696, 9400, 148506, 2753793, 58255840, 1388008566, 36768832200, 1072407094693, 34151921130432, 1179292944433500, 43892264744070736, 1751768399754149025, 74633720517351765504, 3380997879130123703818, 162286529338732345488000, 8227876237310253918100581
Offset: 0
-
seq(n!*coeff(series(log(1-LambertW(-x)*(2+LambertW(-x))/2),x=0,22),x,n),n=0..21); # Paolo P. Lava, Jan 28 2019
-
nmax = 21; CoefficientList[Series[Log[1 - LambertW[-x] (2 + LambertW[-x])/2], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = n^(n - 2) - Sum[Binomial[n, k] (n - k)^(n - k - 2) k a[k], {k, 1, n - 1}]/n; a[0] = 0; Table[a[n], {n, 0, 21}]
A348590
Number of endofunctions on [n] with exactly one isolated fixed point.
Original entry on oeis.org
0, 1, 0, 9, 68, 845, 12474, 218827, 4435864, 102030777, 2625176150, 74701061831, 2329237613988, 78972674630005, 2892636060014050, 113828236497224355, 4789121681108775344, 214528601554419809777, 10193616586275094959534, 512100888749268955942015
Offset: 0
a(3) = 9: 122, 133, 132, 121, 323, 321, 113, 223, 213.
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, t) option remember; `if`(n=0, t, add(g(i)*
b(n-i, `if`(i=1, 1, t))*binomial(n-1, i-1), i=1+t..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..23);
-
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}] ;
b[n_, t_] := b[n, t] = If[n == 0, t, Sum[g[i]*
b[n - i, If[i == 1, 1, t]]*Binomial[n - 1, i - 1], {i, 1 + t, n}]];
a[n_] := b[n, 0];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, May 16 2022, after Alois P. Heinz *)
A350135
Number of endofunctions on [2n] whose smallest connected component has size n.
Original entry on oeis.org
1, 1, 27, 2890, 705740, 310181886, 215071984512, 216357598418676, 298018065222408960, 538758820820128412790, 1237604585414359892787200, 3521561770316172974098259916, 12159265179096745219044911480832, 50086112147669900240287215353718700, 242646275221231775443338250567758643200
Offset: 0
-
a:= n-> `if`(n=0, 1, add(n^(n-j)*(n-1)!/(n-j)!, j=1..n)^2*binomial(2*n, n)/2):
seq(a(n), n=0..14);
A350202
Number T(n,k) of nodes in the k-th connected component of all endofunctions on [n] when components are ordered by increasing size; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
Original entry on oeis.org
1, 7, 1, 61, 19, 1, 709, 277, 37, 1, 9911, 4841, 811, 61, 1, 167111, 91151, 19706, 1876, 91, 1, 3237921, 1976570, 486214, 60229, 3739, 127, 1, 71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1, 1780353439, 1257567127, 380291461, 62248939, 5971291, 340729, 11197, 217, 1
Offset: 1
Triangle T(n,k) begins:
1;
7, 1;
61, 19, 1;
709, 277, 37, 1;
9911, 4841, 811, 61, 1;
167111, 91151, 19706, 1876, 91, 1;
3237921, 1976570, 486214, 60229, 3739, 127, 1;
71850913, 47203241, 13110749, 1892997, 152937, 6721, 169, 1;
...
-
g:= proc(n) option remember; add(n^(n-j)*(n-1)!/(n-j)!, j=1..n) end:
b:= proc(n, i, t) option remember; `if`(n=0, [1, 0], `if`(i>n, 0,
add((p-> p+`if`(t>0 and t-j<1, [0, p[1]*i], 0))(g(i)^j*
b(n-i*j, i+1, max(0, t-j))/j!*combinat[multinomial]
(n, i$j, n-i*j)), j=0..n/i)))
end:
T:= (n, k)-> b(n, 1, k)[2]:
seq(seq(T(n, k), k=1..n), n=1..10);
-
multinomial[n_, k_List] := n!/Times @@ (k!);
g[n_] := g[n] = Sum[n^(n - j)*(n - 1)!/(n - j)!, {j, 1, n}];
b[n_, i_, t_] := b[n, i, t] = If[n == 0, {1, 0}, If[i > n, {0, 0}, Sum[ Function[p, p + If[t > 0 && t - j < 1, {0, p[[1]]*i}, {0, 0}]][g[i]^j*b[n - i*j, i + 1, Max[0, t - j]]/j!*multinomial[n, Append[Table[i, {j}], n - i*j]]], {j, 0, n/i}]]];
T[n_, k_] := b[n, 1, k][[2]];
Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Mar 18 2022, after Alois P. Heinz *)
A200248
The number of (simultaneously) fixed and isolated points in the digraph representation of all functions f:{1,2,...,n}->{1,2,...,n}.
Original entry on oeis.org
0, 1, 2, 9, 68, 710, 9414, 151032, 2840648, 61247664, 1488691530, 40262372480, 1199047315212, 38984874829056, 1373954963380622, 52171222364513280, 2123286652815757200, 92201888436661409792, 4255016114128163220882, 207954945060162884960256
Offset: 0
-
t=Sum[n^(n-1)x^n/n!,{n,1,20}];Range[0,20]! CoefficientList[Series[x(Log[1/(1-t)]+1),{x,0,20}],x]
A225723
Triangular array read by rows: T(n,k) is the number of size k components in the digraph representation of all functions f:{1,2,...,n}->{1,2,...,n}; n>=1, 1<=k<=n.
Original entry on oeis.org
1, 2, 3, 12, 9, 17, 108, 72, 68, 142, 1280, 810, 680, 710, 1569, 18750, 11520, 9180, 8520, 9414, 21576, 326592, 196875, 152320, 134190, 131796, 151032, 355081, 6588344, 3919104, 2975000, 2544640, 2372328, 2416512, 2840648, 6805296
Offset: 1
Triangle T(n,k) begins:
1;
2, 3;
12, 9, 17;
108, 72, 68, 142;
1280, 810, 680, 710, 1569;
18750, 11520, 9180, 8520, 9414, 21576;
326592, 196875, 152320, 134190, 131796, 151032, 355081;
...
-
b:= n-> n!*add(n^(n-k-1)/(n-k)!, k=1..n):
T:= (n, k)-> binomial(n,k)*b(k)*(n-k)^(n-k):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, May 13 2013
-
nn = 8; tx = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; txy =
Sum[n^(n - 1) (x y)^n/n!, {n, 1, nn}];
Map[Select[#, # > 0 &] &,
Drop[Range[0, nn]! CoefficientList[
Series[Log[1/(1 - txy)]/(1 - tx), {x, 0, nn}], {x, y}],
1]] // Grid
Comments