A215327
Smooth necklaces with 3 colors.
Original entry on oeis.org
1, 3, 5, 8, 15, 27, 58, 115, 252, 541, 1196, 2629, 5894, 13156, 29667, 66978, 151966, 345497, 788396, 1802678, 4133161, 9495317, 21861393, 50423468, 116514553, 269666605, 625108573, 1451128479, 3373267275, 7851415838, 18296568717
Offset: 0
The smooth pre-necklaces, necklaces (N), and Lyndon words (L) of length 4 with 3 colors (using symbols ".", "1", and "2") are:
.... 1 . N
...1 4 ...1 N L
..1. 3 .1.
..11 4 ..11 N L
..12 4 ..12 N L
.1.1 2 .1 N
.11. 3 11.
.111 4 .111 N L
.112 4 .112 N L
.121 4 .121 N L
.122 4 .122 N L
1111 1 1 N
1112 4 1112 N L
1121 3 121
1122 4 1122 N L
1212 2 12 N
1221 3 221
1222 4 1222 N L
2222 1 2 N
There are 19 pre-necklaces, 15 necklaces, and 10 Lyndon words.
So a(4) = 15.
Cf.
A001867 (necklaces, 3 colors),
A215328 (smooth Lyndon words, 3 colors).
A054610
a(n) = Sum_{d|n} phi(d)*3^(n/d).
Original entry on oeis.org
0, 3, 12, 33, 96, 255, 780, 2205, 6672, 19755, 59340, 177177, 532416, 1594359, 4785228, 14349525, 43053504, 129140211, 387441756, 1162261521, 3486844320, 10460357775, 31381236876, 94143178893, 282430082832, 847288610475
Offset: 0
A056283
Number of n-bead necklaces with exactly three different colored beads.
Original entry on oeis.org
0, 0, 2, 9, 30, 91, 258, 729, 2018, 5613, 15546, 43315, 120750, 338259, 950062, 2678499, 7573350, 21480739, 61088874, 174184755, 497812638, 1425847623, 4092087522, 11765822365, 33887517870, 97756387365, 282414624746, 816999710223, 2366509198350, 6862930841141
Offset: 1
For n=3, the two necklaces are ABC and ACB.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
k=3; Table[k!DivisorSum[n,EulerPhi[#]StirlingS2[n/#,k]&]/n,{n,1,30}] (* Robert A. Russell, Sep 26 2018 *)
A056284
Number of n-bead necklaces with exactly four different colored beads.
Original entry on oeis.org
0, 0, 0, 6, 48, 260, 1200, 5106, 20720, 81876, 318000, 1223136, 4675440, 17815020, 67769552, 257700906, 980240880, 3731753180, 14222737200, 54278580036, 207438938000, 793940475900, 3043140078000, 11681057249536, 44900438149296, 172824331826580, 666070256489680
Offset: 1
For n=4, the six necklaces are ABCD, ABDC, ACBD, ACDB, ADBC and ADCB.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
k=4; Table[k!DivisorSum[n,EulerPhi[#]StirlingS2[n/#,k]&]/n,{n,1,30}] (* Robert A. Russell, Sep 26 2018 *)
-
a(n) = my(k=4);(k!/n)*sumdiv(n, d, eulerphi(d)*stirling(n/d,k,2)); \\ Michel Marcus, Sep 27 2018
A056285
Number of n-bead necklaces with exactly five different colored beads.
Original entry on oeis.org
0, 0, 0, 0, 24, 300, 2400, 15750, 92680, 510312, 2691600, 13794150, 69309240, 343501500, 1686135376, 8221437000, 39901776360, 193054016840, 932142850800, 4495236798162, 21664357535320, 104388120866100, 503044634004000, 2425003924383900, 11696087875731624
Offset: 1
For n=5, the 24 necklaces are A followed by the 24 permutations of BCDE.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
k=5; Table[k!DivisorSum[n,EulerPhi[#]StirlingS2[n/#,k]&]/n,{n,1,30}] (* Robert A. Russell, Sep 26 2018 *)
-
a(n) = my(k=5); k!*sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2))/n; \\ Michel Marcus, Sep 27 2018
A056286
Number of n-bead necklaces with exactly six different colored beads.
Original entry on oeis.org
0, 0, 0, 0, 0, 120, 2160, 23940, 211680, 1643544, 11748240, 79419180, 516257280, 3262443120, 20193277104, 123071707080, 741419995680, 4427490147480, 26264144909520, 155018841055596, 911509010154720, 5344538384445120, 31272099902089200, 182707081122261480
Offset: 1
For n=6, the 120 necklaces are A followed by the 120 permutations of BCDEF.
- M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
-
k=6; Table[k!DivisorSum[n,EulerPhi[#]StirlingS2[n/#,k]&]/n,{n,1,30}] (* Robert A. Russell, Sep 26 2018 *)
Original entry on oeis.org
0, 0, 1, 4, 10, 24, 50, 108, 220, 452, 916, 1860, 3744, 7560, 15202, 30576, 61420, 123360, 247542, 496692, 996088, 1997272, 4003558, 8023884, 16077964, 32212248, 64527436, 129246660, 258847876, 518358120, 1037949256, 2078209980, 4160747500, 8329633416, 16674575056, 33378031536
Offset: 0
A278639
Number of pairs of orientable necklaces with n beads and up to 3 colors; i.e., turning the necklace over does not leave it unchanged. The turned-over necklace is not included in the count.
Original entry on oeis.org
0, 0, 0, 1, 3, 12, 38, 117, 336, 976, 2724, 7689, 21455, 60228, 168714, 475037, 1338861, 3788400, 10742588, 30556305, 87112059, 248967564, 713032782, 2046325125, 5883428618, 16944975048, 48880471500, 141212377489, 408509453511, 1183275193908, 3431504760514
Offset: 0
Example: The 3 orientable necklaces with 4 beads and the colors A, B and C are AABC, BBAC and CCAB. The turned-over necklaces AACB, BBCA and CCBA are not included in the count.
For n=6, the three chiral pairs using just two colors are AABABB-AABBAB, AACACC-AACCAC, and BBCBCC-BBCCBC. The other 35 use three colors. - _Robert A. Russell_, Sep 24 2018
-
mx=40;f[x_,k_]:=(1-Sum[EulerPhi[n]*Log[1-k*x^n]/n,{n,1,mx}]-Sum[Binomial[k,i]*x^i,{i,0,2}]/(1-k*x^2))/2;CoefficientList[Series[f[x,3],{x,0,mx}],x]
k=3; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n) -(k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)
A343465
a(n) = -(1/n) * Sum_{d|n} phi(n/d) * (-3)^d.
Original entry on oeis.org
3, -3, 11, -21, 51, -119, 315, -831, 2195, -5883, 16107, -44357, 122643, -341487, 956635, -2690841, 7596483, -21522347, 61171659, -174342165, 498112275, -1426403751, 4093181691, -11767920107, 33891544419, -97764009003, 282429537947, -817028472645, 2366564736723, -6863037262207
Offset: 1
-
Table[-(1/n) Sum[EulerPhi[n/d] (-3)^d, {d, Divisors[n]}], {n, 1, 30}]
nmax = 30; CoefficientList[Series[Sum[EulerPhi[k] Log[1 + 3 x^k]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
A106365
Number of necklaces with n beads of 3 colors, no 2 adjacent beads the same color.
Original entry on oeis.org
3, 3, 2, 6, 6, 14, 18, 36, 58, 108, 186, 352, 630, 1182, 2190, 4116, 7710, 14602, 27594, 52488, 99878, 190746, 364722, 699252, 1342182, 2581428, 4971066, 9587580, 18512790, 35792568, 69273666, 134219796, 260301174, 505294128, 981706830
Offset: 1
-
a[n_] := If[n==1, 3, Sum[EulerPhi[n/d]*(2*(-1)^d+2^d), {d, Divisors[n]}]/n ];
Array[a, 35] (* Jean-François Alcover, Jul 06 2018, after Andrew Howroyd *)
-
a(n) = if(n==1, 3, sumdiv(n, d, eulerphi(n/d)*(2*(-1)^d + 2^d))/n); \\ Andrew Howroyd, Oct 14 2017
Comments