cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 35 results. Next

A054469 a(n) = a(n-1) + a(n-2) + (n+2)*binomial(n+3, 3)/2, with a(0) = 1, a(1) = 7.

Original entry on oeis.org

1, 7, 28, 85, 218, 499, 1053, 2092, 3970, 7272, 12958, 22596, 38739, 65535, 109714, 182185, 300620, 493635, 807555, 1317360, 2144396, 3485032, 5657028, 9174560, 14869613, 24088399, 39009168, 63156437, 102233030, 165466347, 267786673
Offset: 0

Views

Author

Barry E. Williams, Mar 31 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Right-hand column 11 of triangle A011794.

Programs

  • Magma
    A054469:= func< n | Fibonacci(n+12) -(1/12)*(1716 +802*n +173*n^2 +20*n^3 +n^4) >;
    [A054469(n): n in [0..40]]; // G. C. Greubel, Oct 21 2024
    
  • Mathematica
    RecurrenceTable[{a[0]==1,a[1]==7,a[n]==a[n-1]+a[n-2]+(n+2) Binomial[ n+3,3]/2},a,{n,30}] (* Harvey P. Dale, Sep 22 2013 *)
    CoefficientList[Series[(1+x)/((1-x)^5*(1-x-x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 23 2013 *)
  • PARI
    a(n) = sum(i=1,(n+2)\2,binomial(n+5-i,n+2-2*i))+2*sum(i=1,(n+1)\2,binomial(n+5-i,n+1-2*i)) \\ Jason Yuen, Aug 13 2024
    
  • SageMath
    def A054469(n): return fibonacci(n+12) - (1716 + 802*n + 173*n^2 + 20*n^3 + n^4)//12
    [A054469(n) for n in range(41)] # G. C. Greubel, Oct 21 2024

Formula

a(n) = a(n-1) + a(n-2) + (n+1)*(n+2)^2*(n+3)/12.
a(-n) = 0.
a(n) = (Sum_{i=1..floor((n+2)/2)} binomial(n+5-i, n+2-2*i)) + 2*(Sum_{i=1..floor((n+1)/2)} binomial(n+5-i, n+1-2*i)).
G.f.: (1+x) / ((1-x)^5*(1-x-x^2)). - Colin Barker, Jun 11 2013
From G. C. Greubel, Oct 21 2024: (Start)
a(n) = Fibonacci(n+12) - Sum_{j=0..4} Fibonacci(11-2*j) * binomial(n+j, j).
a(n) = Fibonacci(n+12) - (1/12)*(1716 + 802*n + 173*n^2 + 20*n^3 + n^4). (End)

A202970 Symmetric matrix based on A001911, by antidiagonals.

Original entry on oeis.org

1, 3, 3, 6, 10, 6, 11, 21, 21, 11, 19, 39, 46, 39, 19, 32, 68, 87, 87, 68, 32, 53, 115, 153, 167, 153, 115, 53, 87, 191, 260, 296, 296, 260, 191, 87, 142, 314, 433, 505, 528, 505, 433, 314, 142, 231, 513, 713, 843, 904, 904, 843, 713, 513, 231, 375, 835
Offset: 1

Views

Author

Clark Kimberling, Dec 27 2011

Keywords

Comments

Let s=A001911 (F(n+3)-2, where F(n)=A000045(n), the Fibonacci numbers), and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202970 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202971 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1...3...6....11...19
3...10..21...39...68
6...21..46...87...153
11..39..87...167..296
19..68..153..296..528
		

Crossrefs

Programs

  • Mathematica
    s[k_] := -2 + Fibonacci[k + 3];
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
    Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}]  (* A001891 *)
    Table[m[1, j], {j, 1, 12}]     (* A001911 *)
    Table[m[j, j], {j, 1, 12}]
    Table[m[j, j + 1], {j, 1, 12}]
    Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}]  (* A001925 *)

A356619 a(n) = number of k-tuples (u(1), u(2), ..., u(k)) with 1 <= u(1) < u(2) < ... < u(k) <= n such that u(i) - u(i-1) <= 3 for i = 2,...,k.

Original entry on oeis.org

0, 1, 4, 11, 25, 52, 103, 198, 374, 699, 1298, 2401, 4431, 8166, 15037, 27676, 50924, 93685, 172336, 316999, 583077, 1072472, 1972611, 3628226, 6673378, 12274287, 22575966, 41523709, 76374043, 140473802, 258371641, 475219576, 874065112, 1607656425
Offset: 0

Views

Author

Clark Kimberling, Aug 24 2022

Keywords

Crossrefs

Programs

  • Mathematica
    maxDiff = 3;
    t = Map[Length[Select[Map[{#, Max[Differences[#]]} &,
         Drop[Subsets[Range[#]], # + 1]], #[[2]] <= maxDiff &]] &, Range[16]]
    FindGeneratingFunction[%, x]
    FindLinearRecurrence[t]
    LinearRecurrence[{3, -2, 0, -1, 1}, {0, 1, 4, 11, 25}, 45]

Formula

G.f.: x*(1 + x + x^2)/((-1 + x)^2*(1 - x - x^2 - x^3)).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-4) + a(n-5).
a(n) = A221949(n+2)-1 for n >= 0.

A356620 a(n) = number of k-tuples (u(1), u(2), ..., u(k)) with 1 <= u(1) < u(2) < ... < u(k) <= n such that u(i) - u(i-1) <= 4 for i = 2,...,k.

Original entry on oeis.org

0, 1, 4, 11, 26, 56, 115, 230, 453, 884, 1716, 3321, 6416, 12383, 23886, 46060, 88803, 171194, 330009, 636136, 1226216, 2363633, 4556076, 8782147, 16928162, 32630112, 62896595, 121237118, 233692093, 450456028, 868281948, 1673667305, 3226097496, 6218502903
Offset: 0

Views

Author

Clark Kimberling, Sep 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    maxDiff = 4; t = Map[Length[Select[Map[{#, Max[Differences[#]]} &,
          Drop[Subsets[Range[#]], # + 1]], #[[2]] <= maxDiff &]] &, Range[18]]

Formula

G.f.: (x (-1 - x - x^2 - x^3))/((-1 + x)^2 (-1 + x + x^2 + x^3 + x^4)).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-5) + a(n-6).

A356621 a(n) = number of k-tuples (u(1), u(2), ..., u(k)) with 1 <= u(1) < u(2) < ... < u(k) <= n such that u(i) - u(i-1) <= 5 for i = 2,...,k.

Original entry on oeis.org

0, 1, 4, 11, 26, 57, 119, 242, 485, 964, 1907, 3762, 7410, 14583, 28686, 56413, 110924, 218091, 428777, 842976, 1657271, 3258134, 6405349, 12592612, 24756452, 48669933, 95682600, 188107071, 369808798, 727024989, 1429293531, 2809917134, 5524151673
Offset: 0

Views

Author

Clark Kimberling, Sep 04 2022

Keywords

Crossrefs

Programs

  • Mathematica
    maxDiff = 5; t = Map[Length[Select[Map[{#, Max[Differences[#]]} &,
          Drop[Subsets[Range[#]], # + 1]], #[[2]] <= maxDiff &]] &, Range[20]]

Formula

G.f.: (x (-1 - x - x^2 - x^3 - x^4))/((-1 + x)^2 (-1 + x + x^2 + x^3 + x^4 + x^5)).
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-6) + a(n-7).

A001884 Hit polynomials.

Original entry on oeis.org

1, 0, 1, 2, 20, 104, 775, 6140, 55427, 553802, 6087992, 72994152, 948103477, 13262133736, 198769630061, 3177862894922, 53984653965996, 971068821144112, 18438722595913195, 368558842844143268, 7735520783692157215, 170095060428041137778, 3910332719957508452016, 93806427360751009531632
Offset: 1

Views

Author

Keywords

References

  • J. Riordan, The enumeration of permutations with three-ply staircase restrictions, unpublished memorandum, Bell Telephone Laboratories, Murray Hill, NJ, Oct 1963. See A001883.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Second column of A080018.

Extensions

More terms from Vladeta Jovovic and Vladimir Baltic, Jan 20 2003
a(21)-a(24) from Vaclav Kotesovec, Oct 10 2017

A001890 Hit polynomials.

Original entry on oeis.org

1, 10, 34, 206, 1351, 10543, 92708, 912884, 9917445, 117838808, 1519483258, 21128310078, 315093762147, 5016410089130, 84909414423784, 1522548805068310, 28830824064870329, 574880701875755325, 12039866150973004846, 264230694283295736788, 6063848537910027941323
Offset: 3

Views

Author

Keywords

References

  • J. Riordan, The enumeration of permutations with three-ply staircase restrictions, unpublished memorandum, Bell Telephone Laboratories, Murray Hill, NJ, Oct 1963. (See A001883)
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Fourth column of A080061.

Programs

  • Mathematica
    (* Program not suitable to compute more than a dozen terms *)
    M[n_] := Table[If[0 <= i - j <= 2, x, 1], {i, 1, n}, {j, 1, n}];
    a[n_] := Coefficient[Permanent[M[n]], x, 3];
    Table[an = a[n]; Print[n, " ", an]; an, {n, 3, 15}] (* Jean-François Alcover, Jan 12 2018 *)

Extensions

More terms from Vladeta Jovovic, Vladimir Baltic, Jan 23 2003
a(21)-a(23) from Vaclav Kotesovec, Oct 10 2017

A054470 Partial sums of A054469.

Original entry on oeis.org

1, 8, 36, 121, 339, 838, 1891, 3983, 7953, 15225, 28183, 50779, 89518, 155053, 264767, 446952, 747572, 1241207, 2048762, 3366122, 5510518, 8995550, 14652578, 23827138, 38696751, 62785150, 101794318, 164950755, 267183785, 432650132
Offset: 0

Views

Author

Barry E. Williams, Mar 31 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Right-hand column 13 of triangle A011794.

Programs

  • Magma
    A054470:= func< n | Fibonacci(n+14) - (45120 +21458*n +4925*n^2 +680*n^3 +55*n^4 +2*n^5)/120 >;
    [A054470(n): n in [0..40]]; // G. C. Greubel, Oct 21 2024
    
  • Mathematica
    Accumulate[RecurrenceTable[{a[0]==1,a[1]==7,a[n]==a[n-1]+a[n-2]+(n+2) Binomial[n+3,3]/2},a,{n,40}]] (* Harvey P. Dale, Sep 22 2013 *)
    CoefficientList[Series[(1+x)/((1-x)^6*(1-x-x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 23 2013 *)
  • SageMath
    def A054470(n): return fibonacci(n+14) -(45120 +21458*n +4925*n^2 +680*n^3 +55*n^4 +2*n^5)//120
    [A054470(n) for n in range(41)] # G. C. Greubel, Oct 21 2024

Formula

a(n) = a(n-1) + a(n-2) + (2*n+5)*C(n+4, 4)/5, with a(-n) = 0.
a(n) = Sum_{j=1..[(n+2)/2]} binomial(n+6-j, n+2-2*j) + 2*Sum_{j=1..[(n+1)/2]} binomial(n+6-j, n+1-2*j), where [x]=greatest integer in x.
G.f.: (1+x) / ((1-x)^6*(1-x-x^2)). - Colin Barker, Jun 11 2013
From G. C. Greubel, Oct 21 2024: (Start)
a(n) = Fibonacci(n+14) - Sum_{j=0..5} Fibonacci(13-2*j)*binomial(n+j,j).
a(n) = Fibonacci(n+14) - (1/120)*(45120 + 21458*n + 4925*n^2 + 680*n^3 + 55*n^4 + 2*n^5). (End)

A163250 a(n) = A000045(n+6) - (n^2 + 4*n + 8).

Original entry on oeis.org

0, 0, 1, 5, 15, 36, 76, 148, 273, 485, 839, 1424, 2384, 3952, 6505, 10653, 17383, 28292, 45964, 74580, 120905, 195885, 317231, 513600, 831360, 1345536, 2177521, 3523733, 5701983, 9226500, 14929324, 24156724, 39087009, 63244757, 102332855
Offset: 0

Views

Author

Jonathan Vos Post, Jul 23 2009

Keywords

Comments

Given on p. 2 of Freixas, and proved as Theorem 3.2.
Partial sums of A001891. - Bill McEachen, Jan 20 2023
Original name was: The number of nonisomorphic complete simple games with n voters of two different types. - Charles R Greathouse IV, Jan 22 2023

Crossrefs

Programs

  • GAP
    List([0..35],n->Fibonacci(n+6)-(n^2+4*n+8)); # Muniru A Asiru, Oct 28 2018
    
  • Magma
    [Fibonacci(n+6)-(n^2+4*n+8): n in [0..40]]; // Vincenzo Librandi, Sep 22 2017
    
  • Maple
    with(numtheory): seq(coeff(series(x^2*(1+x)/((x^2+x-1)*(x-1)^3),x,n+1), x, n), n = 0 .. 40); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    LinearRecurrence[{4,-5,1,2,-1}, {0,0,1,5,15}, 40] (* or *) Table[ Fibonacci[n+6] -(n^2+4*n+8), {n,0,40}] (* G. C. Greubel, Dec 12 2016 *)
  • PARI
    concat([0,0], Vec(x^2*(1+x)/((1-x-x^2)*(1-x)^3) + O(x^40))) \\ G. C. Greubel, Dec 12 2016
    
  • Sage
    f=fibonacci; [f(n+6) -(n^2+4*n+8) for n in (0..40)] # G. C. Greubel, Jul 06 2019

Formula

a(n) = F(n+6) - (n^2 + 4*n + 8), where F(n) are the Fibonacci numbers.
From R. J. Mathar, Jul 27 2009: (Start)
a(n) = 4*a(n-1) -5*a(n-2) +a(n-3) +2*a(n-4) -a(n-5).
G.f.: x^2*(1+x)/((1-x-x^2)*(1-x)^3). (End)
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} i^2 * C(n-k-1,k-i). - Wesley Ivan Hurt, Sep 21 2017
a(n) = A053808(n-2) for n >= 2. - Georg Fischer, Oct 28 2018
a(n) = (n-1)^2 + a(n-1) + a(n-2), n>2 (conjectured). - Bill McEachen, Jan 20 2023

Extensions

More terms from R. J. Mathar, Jul 27 2009
New name using given formula from Joerg Arndt, Jan 21 2023

A001885 Hit polynomials.

Original entry on oeis.org

2, 2, 10, 28, 207, 1288, 10366, 91296, 903037, 9832848, 117032570, 1510932116, 21028774738, 313832463386, 4999133311044, 84655108256252, 1518546437350265, 28763765236019284, 573689119174695326, 12017485839703597024, 263787711208968183879, 6054632852404055079936
Offset: 2

Views

Author

Keywords

References

  • J. Riordan, The enumeration of permutations with three-ply staircase restrictions, unpublished memorandum, Bell Telephone Laboratories, Murray Hill, NJ, Oct 1963. (See A001883).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Third column of A080018.

Extensions

More terms from Vladeta Jovovic and Vladimir Baltic, Jan 20 2003
a(21)-a(23) from Vaclav Kotesovec, Oct 10 2017
Previous Showing 21-30 of 35 results. Next