cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 75 results. Next

A202874 Symmetric matrix based on (1,2,3,5,8,13,...), by antidiagonals.

Original entry on oeis.org

1, 2, 2, 3, 5, 3, 5, 8, 8, 5, 8, 13, 14, 13, 8, 13, 21, 23, 23, 21, 13, 21, 34, 37, 39, 37, 34, 21, 34, 55, 60, 63, 63, 60, 55, 34, 55, 89, 97, 102, 103, 102, 97, 89, 55, 89, 144, 157, 165, 167, 167, 165, 157, 144, 89, 144, 233, 254, 267, 270, 272, 270, 267, 254
Offset: 1

Views

Author

Clark Kimberling, Dec 26 2011

Keywords

Comments

Let s=(1,2,3,5,8,13,...)=(F(k+1)), where F=A000045, and let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A202874 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202875 for characteristic polynomials of principal submatrices of M, with interlacing zeros.

Examples

			Northwest corner:
1....2....3....5....8....13
2....5....8....13...21...34
3....8....14...23...37...60
5....13...23...39...63...102
8....21...37...63...102..167
		

Crossrefs

Cf. A202875.

Programs

  • Mathematica
    s[k_] := Fibonacci[k + 1];
    U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[s[k], {k, 1, 15}]];
    L = Transpose[U]; M = L.U; TableForm[M]
    m[i_, j_] := M[[i]][[j]];
    Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]]
    f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}]
    Table[f[n], {n, 1, 12}]
    Table[Sqrt[f[n]], {n, 1, 12}]  (* A001911 *)
    Table[m[1, j], {j, 1, 12}]     (* A000045 *)
    Table[m[j, j], {j, 1, 12}]     (* A119996 *)
    Table[m[j, j + 1], {j, 1, 12}] (* A180664 *)
    Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}]  (* A002940 *)

A226538 a(2t) = a(2t-1) + 1, a(2t+1) = a(2t) + a(2t-2) for t >= 1, with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 7, 11, 12, 19, 20, 32, 33, 53, 54, 87, 88, 142, 143, 231, 232, 375, 376, 608, 609, 985, 986, 1595, 1596, 2582, 2583, 4179, 4180, 6763, 6764, 10944, 10945, 17709, 17710, 28655, 28656, 46366, 46367, 75023, 75024, 121391, 121392, 196416, 196417
Offset: 0

Views

Author

V. T. Jayabalaji, Jun 10 2013

Keywords

Programs

  • Haskell
    a226538 n = a226538_list !! n
    a226538_list = concat $ transpose [drop 2 a000071_list, tail a001911_list]
    -- Reinhard Zumkeller, Jun 18 2013
  • Maple
    f:= proc(n) option remember;
          if n <= 1 then 1
        elif n mod 2 = 0 then f(n-1)+1
        else f(n-1)+f(n-3)
          fi
        end:
    t21:=[seq(f(n),n=0..60)];
  • Mathematica
    LinearRecurrence[{0, 2, 0, 0, 0, -1}, {1, 1, 2, 3, 4, 6}, 50] (* Jean-François Alcover, Feb 13 2018 *)

Formula

a(2n) = A000071(n+3), a(2n+1) = A001911(n+1). - Philippe Deléham, Jun 18 2013
G.f.: (1+x+x^3)/((1-x)*(1+x)*(1-x^2-x^4)). - Philippe Deléham, Jun 18 2013
a(n) = a(n-1) + a(n-3)*(1-(-1)^n)/2 + (1+(-1)^n)/2. - Paolo P. Lava, Jun 27 2013

Extensions

Edited by N. J. A. Sloane, Jun 18 2013

A246104 Least m > 0 for which (s(m), ..., s(n+m-1)) = (s(0), ..., s(n)), the first n+1 terms of the infinite Fibonacci word A003849.

Original entry on oeis.org

2, 3, 5, 5, 8, 8, 8, 13, 13, 13, 13, 13, 21, 21, 21, 21, 21, 21, 21, 21, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89
Offset: 0

Views

Author

Clark Kimberling, Aug 14 2014

Keywords

Comments

If n is a term of A001911, then a(n) = n+2, otherwise a(n) > n+2. - Ivan Neretin, Sep 30 2017

Examples

			In A003849, the initial segment (s(0), ..., s(6)) = (0,1,0,0,1,0,1) first repeats at (s(8), ..., s(14)), so that a(6) = 8.
		

Crossrefs

Programs

  • Maple
    seq(combinat:-fibonacci(n)$combinat:-fibonacci(n-2),n=2..12); # Robert Israel, Oct 01 2017
  • Mathematica
    s = Flatten[Nest[{#, #[[1]]} &, {0, 1}, 12]]; b[m_, n_] := b[m, n] = Take[s, {m, n}]; q = -1 + Flatten[Table[Select[n + Range[2, 1600], b[#, n + # - 1] == b[1, n] &, 1], {n, 1, 120}]]
    Flatten@Table[ConstantArray[Fibonacci[n + 1], Fibonacci[n - 1]], {n, 10}] (* Ivan Neretin, Sep 30 2017 *)

Formula

Concatenation of F(n - 2) copies of F(n), for n >= 1, where F = A000045 (Fibonacci numbers).

A345123 Number T(n,k) of ordered subsequences of {1,...,n} containing at least k elements and such that the first differences contain only odd numbers; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 2, 1, 4, 3, 1, 7, 6, 3, 1, 12, 11, 7, 3, 1, 20, 19, 14, 8, 3, 1, 33, 32, 26, 17, 9, 3, 1, 54, 53, 46, 34, 20, 10, 3, 1, 88, 87, 79, 63, 43, 23, 11, 3, 1, 143, 142, 133, 113, 83, 53, 26, 12, 3, 1, 232, 231, 221, 196, 156, 106, 64, 29, 13, 3, 1, 376, 375, 364, 334, 279, 209, 132, 76, 32, 14, 3, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 08 2021

Keywords

Comments

The sequence of column k satisfies a linear recurrence with constant coefficients of order 2k if k >= 2 and of order 3 for k in {0, 1}.

Examples

			T(0,0) = 1: [].
T(1,1) = 1: [1].
T(2,2) = 1: [1,2].
T(3,1) = 6: [1], [2], [3], [1,2], [2,3], [1,2,3].
T(4,0) = 12: [], [1], [2], [3], [4], [1,2], [1,4], [2,3], [3,4], [1,2,3], [2,3,4], [1,2,3,4].
T(6,3) = 17: [1,2,3], [1,2,5], [1,4,5], [2,3,4], [2,3,6], [2,5,6], [3,4,5], [4,5,6], [1,2,3,4], [1,2,3,6], [1,2,5,6], [1,4,5,6], [2,3,4,5], [3,4,5,6], [1,2,3,4,5], [2,3,4,5,6], [1,2,3,4,5,6].
Triangle T(n,k) begins:
    1;
    2,   1;
    4,   3,   1;
    7,   6,   3,   1;
   12,  11,   7,   3,   1;
   20,  19,  14,   8,   3,   1;
   33,  32,  26,  17,   9,   3,  1;
   54,  53,  46,  34,  20,  10,  3,  1;
   88,  87,  79,  63,  43,  23, 11,  3,  1;
  143, 142, 133, 113,  83,  53, 26, 12,  3, 1;
  232, 231, 221, 196, 156, 106, 64, 29, 13, 3, 1;
  ...
		

References

  • Chu, Hung Viet, Various Sequences from Counting Subsets, Fib. Quart., 59:2 (May 2021), 150-157.

Crossrefs

Columns k=0-3 give: A000071(n+3), A001911, A001924(n-1), A344004.
T(2n,n) give A340766.

Programs

  • Maple
    b:= proc(n, l, t) option remember; `if`(n=0, `if`(t=0, 1, 0), `if`(0
          in [l, irem(1+l-n, 2)], b(n-1, n, max(0, t-1)), 0)+b(n-1, l, t))
        end:
    T:= (n, k)-> b(n, 0, k):
    seq(seq(T(n, k), k=0..n), n=0..10);
    # second Maple program:
    g:= proc(n, k) option remember; `if`(k>n, 0,
         `if`(k in [0, 1], n^k, g(n-1, k-1)+g(n-2, k)))
        end:
    T:= proc(n, k) option remember;
         `if`(k>n, 0, g(n, k)+T(n, k+1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);
    # third Maple program:
    T:= proc(n, k) option remember; `if`(k>n, 0, binomial(iquo(n+k, 2), k)+
          `if`(k>0, binomial(iquo(n+k-1, 2), k), 0)+T(n, k+1))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    T[n_, k_] := T[n, k] = If[k > n, 0, Binomial[Quotient[n+k, 2], k] +
         If[k > 0, Binomial[Quotient[n+k-1, 2], k], 0] + T[n, k+1]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 11}] // Flatten (* Jean-François Alcover, Nov 06 2021, after 3rd Maple program *)

A360259 a(0) = 0, and for any n > 0, let k > 0 be as small as possible and such that F(2) + ... + F(1+k) >= n (where F(m) denotes A000045(m), the m-th Fibonacci number); a(n) = k + a(F(2) + ... + F(1+k) - n).

Original entry on oeis.org

0, 1, 3, 2, 6, 4, 3, 10, 6, 7, 5, 4, 15, 8, 9, 11, 7, 8, 6, 5, 21, 10, 11, 13, 12, 16, 9, 10, 12, 8, 9, 7, 6, 28, 12, 13, 15, 14, 18, 16, 15, 22, 11, 12, 14, 13, 17, 10, 11, 13, 9, 10, 8, 7, 36, 14, 15, 17, 16, 20, 18, 17, 24, 20, 21, 19, 18, 29, 13, 14, 16
Offset: 0

Views

Author

Rémy Sigrist, Jan 31 2023

Keywords

Comments

See A095791 for the corresponding k's.
This sequence has similarities with A227192; here we use Fibonacci numbers, there powers of 2.

Examples

			The first terms, alongside the corresponding k's, are:
  n      a(n)  k
  -----  ----  ---
      0     0  N/A
      1     1    1
      2     3    2
      3     2    2
      4     6    3
      5     4    3
      6     3    3
      7    10    4
      8     6    4
      9     7    4
     10     5    4
     11     4    4
     12    15    5
		

Crossrefs

See A095791, A360260 and A360265 for similar sequences.

Programs

  • PARI
    { t = k = 0; print1 (0); for (n = 1, #a = vector(70), if (n > t, t += fibonacci(1+k++);); print1 (", "a[n] = k+if (t==n, 0, a[t-n]));); }

Formula

a(A001911(n)) = n.

A371592 Irregular table T(n, k), n >= 0, k = 1..2^n, read by rows; the n-th row lists the nonnegative integers whose dual Zeckendorf-binary representation has n ones.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 12, 13, 15, 20, 11, 14, 16, 17, 18, 21, 22, 23, 25, 26, 28, 33, 34, 36, 41, 54, 19, 24, 27, 29, 30, 31, 35, 37, 38, 39, 42, 43, 44, 46, 47, 49, 55, 56, 57, 59, 60, 62, 67, 68, 70, 75, 88, 89, 91, 96, 109, 143
Offset: 0

Views

Author

Rémy Sigrist, Mar 28 2024

Keywords

Comments

As a flat sequence, this is a permutation of the nonnegative integers with inverse A371593.

Examples

			Table T(n, k) begins:
    0
    1, 2
    3, 4, 5, 7
    6, 8, 9, 10, 12, 13, 15, 20
    11, 14, 16, 17, 18, 21, 22, 23, 25, 26, 28, 33, 34, 36, 41, 54
    ...
		

Crossrefs

See A371590 for a similar sequence.
Cf. A001911, A035508, A112310, A371593 (inverse).

Programs

  • PARI
    \\ See Links section.

Formula

A112310(T(n, k)) = n.
T(n, 1) = A001911(n).
T(n, 2^n) = A035508(n).

A053809 Second partial sums of A001891.

Original entry on oeis.org

1, 6, 21, 57, 133, 281, 554, 1039, 1878, 3302, 5686, 9638, 16143, 26796, 44179, 72471, 118435, 193015, 313920, 509805, 827036, 1340636, 2171996, 3517532, 5695053, 9218786, 14920769, 24147269, 39076593, 63233317, 102320326
Offset: 0

Views

Author

Barry E. Williams, Mar 27 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Right-hand column 9 of triangle A011794. Pairwise sums of A014166.

Programs

  • GAP
    List([0..40], n-> Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6) # G. C. Greubel, Jul 06 2019
  • Magma
    [Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6: n in [0..40]]; // G. C. Greubel, Jul 06 2019
    
  • Mathematica
    Table[Fibonacci[n+10] - (2*n^3+27*n^2+145*n+324)/6, {n,0,40}] (* G. C. Greubel, Jul 06 2019 *)
  • PARI
    vector(40, n, n--; fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6) \\ G. C. Greubel, Jul 06 2019
    
  • Sage
    [fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6 for n in (0..40)] # G. C. Greubel, Jul 06 2019
    

Formula

a(n) = a(n-1) + a(n-2) + (2*n+3)*C(n+2, 2)/3; a(-x)=0.
a(n) = Fibonacci(n+10) - (2*n^3 + 27*n^2 + 145*n + 324)/6.
G.f.: (1+x)/((1-x)^4*(1-x-x^2)).
a(n) = 5*a(n-1) - 9*a(n-2) + 6*a(n-3) + a(n-4) - 3*a(n-5) + a(n-6). - Wesley Ivan Hurt, Apr 21 2021

A054470 Partial sums of A054469.

Original entry on oeis.org

1, 8, 36, 121, 339, 838, 1891, 3983, 7953, 15225, 28183, 50779, 89518, 155053, 264767, 446952, 747572, 1241207, 2048762, 3366122, 5510518, 8995550, 14652578, 23827138, 38696751, 62785150, 101794318, 164950755, 267183785, 432650132
Offset: 0

Views

Author

Barry E. Williams, Mar 31 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Right-hand column 13 of triangle A011794.

Programs

  • Magma
    A054470:= func< n | Fibonacci(n+14) - (45120 +21458*n +4925*n^2 +680*n^3 +55*n^4 +2*n^5)/120 >;
    [A054470(n): n in [0..40]]; // G. C. Greubel, Oct 21 2024
    
  • Mathematica
    Accumulate[RecurrenceTable[{a[0]==1,a[1]==7,a[n]==a[n-1]+a[n-2]+(n+2) Binomial[n+3,3]/2},a,{n,40}]] (* Harvey P. Dale, Sep 22 2013 *)
    CoefficientList[Series[(1+x)/((1-x)^6*(1-x-x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 23 2013 *)
  • SageMath
    def A054470(n): return fibonacci(n+14) -(45120 +21458*n +4925*n^2 +680*n^3 +55*n^4 +2*n^5)//120
    [A054470(n) for n in range(41)] # G. C. Greubel, Oct 21 2024

Formula

a(n) = a(n-1) + a(n-2) + (2*n+5)*C(n+4, 4)/5, with a(-n) = 0.
a(n) = Sum_{j=1..[(n+2)/2]} binomial(n+6-j, n+2-2*j) + 2*Sum_{j=1..[(n+1)/2]} binomial(n+6-j, n+1-2*j), where [x]=greatest integer in x.
G.f.: (1+x) / ((1-x)^6*(1-x-x^2)). - Colin Barker, Jun 11 2013
From G. C. Greubel, Oct 21 2024: (Start)
a(n) = Fibonacci(n+14) - Sum_{j=0..5} Fibonacci(13-2*j)*binomial(n+j,j).
a(n) = Fibonacci(n+14) - (1/120)*(45120 + 21458*n + 4925*n^2 + 680*n^3 + 55*n^4 + 2*n^5). (End)

A094102 Triangle read by rows in which row n contains Fib(1), ..., Fib(n-1), Fib(n), Fib(n-1), ..., Fib(1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 3, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 8, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 8, 13, 8, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 13, 8, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 21, 13, 8, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 34, 21, 13, 8, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Alysia Veenhof (ladyluck1899(AT)hotmail.com), May 05 2004

Keywords

Examples

			Triangle begins:
1
1 1 1
1 1 2 1 1
1 1 2 3 2 1 1
1 1 2 3 5 3 2 1 1
1 1 2 3 5 8 5 3 2 1 1
		

Crossrefs

Row sums are in A001911. Cf. A094103.

A166876 a(n) = a(n-1) + Fibonacci(n), a(1)=1983.

Original entry on oeis.org

1983, 1984, 1986, 1989, 1994, 2002, 2015, 2036, 2070, 2125, 2214, 2358, 2591, 2968, 3578, 4565, 6162, 8746, 12927, 19692, 30638, 48349, 77006, 123374, 198399, 319792, 516210, 834021, 1348250, 2180290, 3526559, 5704868, 9229446, 14932333, 24159798
Offset: 1

Views

Author

Geoff Ahiakwo, Oct 22 2009

Keywords

Comments

Starting at some a(1)=s and creating further terms with the recurrence a(n)=a(n-1)+A000045(n) defines a family of sequences with recurrences a(n)= 2*a(n-1) -a(n-3).
The generating functions are x*( s+(1-s)*x+(1-s)*x^2 )/((1-x) * (1-x-x^2)).
The terms are a(n) = A000045(n+2)+s-2 = s + A001911(n-1) = (2*s+1+k)/2 where k=A166863(n-1), n>=1.
Examples: Up to offsets, s=1 yields A000071, s=2 yields A000045 shifted left thrice, s=3 yields A001611 shifted left thrice, s=4 yields A018910.
I appreciate the editing by R. J. Mathar. However I would like further analysis of the following formula. The sequence which I call GAP can have any integer as its first term, not just 1983. Thus a(1) can be 0, 1, 2, 3,... Then a(2) is always a(1)+ 1, while a(3) is a(1) + k(n)/2; where k(n) = k(n-2)+ k(n-1)+4 (This is a separate sequence submitted for consideration). [Geoff Ahiakwo, Nov 19 2009]

Examples

			For s=1983, n=3, we have k= A166863(2)= 5, a(3) = (2s+1+k)/2 = (2*1983+1+5)/2 = 1986.
For n=3, a(3)= a(1)+ k(3)/2 = a(1)+ [K(3-2)+ k(3-1)]/2 + 2 = a(1)+ 1 + 2 thus if a(1)is 0, a(3)= 3; if a(1)= 5, a(3)= 8; if a(1)=1983, a(3)= 1986, etc. [_Geoff Ahiakwo_, Nov 19 2009]
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 0, -1}, {1983, 1984, 1986}, 100] (* G. C. Greubel, May 27 2016 *)

Formula

a(n) = 2*a(n-1) - a(n-3).
G.f.: x*(-1983 + 1982*x + 1982*x^2)/((1-x)*(x^2+x-1)).
Let a(n)= a(1)+ k(n)/2, then G.f.: k(n)= k(n-2)+ k(n-1) + 4. - Geoff Ahiakwo, Nov 19 2009

Extensions

Definition and comments edited by R. J. Mathar, Oct 26 2009
Previous Showing 51-60 of 75 results. Next