cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 68 results. Next

A001940 Absolute value of coefficients of an elliptic function.

Original entry on oeis.org

1, 6, 27, 98, 309, 882, 2330, 5784, 13644, 30826, 67107, 141444, 289746, 578646, 1129527, 2159774, 4052721, 7474806, 13569463, 24274716, 42838245, 74644794, 128533884, 218881098, 368859591, 615513678, 1017596115, 1667593666, 2710062756, 4369417452
Offset: 0

Views

Author

Keywords

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nn = 4*10; b = Flatten[Table[{6, 6, 6, 0}, {nn/4}]]; CoefficientList[x*Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Aug 17 2012 *)
    nmax = 40; CoefficientList[Series[Product[((1 - x^(4*k)) / (1 - x^k))^6, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 15 2017 *)

Formula

G.f.: Product ( 1 - x^k )^(-c(k)), c(k) = 6, 6, 6, 0, 6, 6, 6, 0, ....
a(n) ~ 3^(1/4) * exp(sqrt(3*n)*Pi) / (128*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
G.f.: Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^6. - Ilya Gutkovskiy, Dec 04 2017

Extensions

Extended and corrected by Simon Plouffe

A001941 Absolute values of coefficients of an elliptic function.

Original entry on oeis.org

1, 7, 35, 140, 483, 1498, 4277, 11425, 28889, 69734, 161735, 362271, 786877, 1662927, 3428770, 6913760, 13660346, 26492361, 50504755, 94766875, 175221109, 319564227, 575387295, 1023624280, 1800577849, 3133695747, 5399228149, 9214458260, 15584195428
Offset: 0

Views

Author

Keywords

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nn = 4*10; b = Flatten[Table[{7, 7, 7, 0}, {nn/4}]]; CoefficientList[x*Series[Product[1/(1 - x^m)^b[[m]], {m, nn}], {x, 0, nn}], x] (* T. D. Noe, Aug 17 2012 *)
    nmax = 40; CoefficientList[Series[Product[((1 - x^(4*k)) / (1 - x^k))^7, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 15 2017 *)

Formula

G.f.: Product ( 1 - x^k )^-c(k), c(k) = 7, 7, 7, 0, 7, 7, 7, 0, ....
a(n) ~ 7^(1/4) * exp(sqrt(7*n/2)*Pi) / (256*2^(3/4)*n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
G.f.: Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^7. - Ilya Gutkovskiy, Dec 04 2017

A333374 G.f.: Sum_{k>=1} (x^(k*(k+1)) * Product_{j=1..k} (1 + x^j)/(1 - x^j)).

Original entry on oeis.org

1, 0, 1, 2, 2, 2, 3, 4, 6, 8, 10, 12, 15, 18, 22, 28, 34, 42, 52, 62, 75, 90, 106, 126, 150, 176, 208, 246, 288, 338, 397, 462, 538, 626, 724, 838, 968, 1114, 1282, 1474, 1690, 1936, 2217, 2532, 2890, 3296, 3750, 4264, 4844, 5492, 6222, 7042, 7958, 8986, 10138
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 17 2020

Keywords

Comments

The g.f. Sum_{k >= 1} x^(k*(k+1)) * Product_{j = 1..k} (1 + x^j)/(1 - x^j) = Sum_{k >= 1} x^(k*(k+1)) * Product_{j = 1..k} (1 + x^j)/(1 - x^j + 2*x^j) == Sum_{k >= 1} x^(k*(k+1)) (mod 2). It follows that a(n) is odd iff n = k*(k + 1) for some nonnegative integer k. - Peter Bala, Jan 04 2025

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Sum[x^(n*(n+1))*Product[(1+x^k)/(1-x^k), {k, 1, n}], {n, 0, Sqrt[nmax]}], {x, 0, nmax}], x]
    nmax = 100; p = 1; s = 1; Do[p = Normal[Series[p*(1 + x^k)/(1 - x^k)*x^(2*k), {x, 0, nmax}]]; s += p;, {k, 1, Sqrt[nmax]}]; Take[CoefficientList[s, x], nmax + 1]

Formula

Limit_{n->infinity} A066447(n) / a(n) = A058265 = (1 + (19+3*sqrt(33))^(1/3) + (19-3*sqrt(33))^(1/3))/3 = 1.839286755214... (the tribonacci constant).
Compare with: A306734(n) / A333179(n) -> A060006 (the plastic constant) and A003114(n) / A003106(n) -> A001622 (golden ratio).
a(n) ~ c * d^sqrt(n) / n^(3/4), where d = A376841 = 7.1578741786143524880205... = exp(2*sqrt(log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))) and c = 0.10511708841962944170826735560432... = (log(r)^2 - polylog(2, -r^2) + polylog(2, r^2))^(1/4) * sqrt(1/24 - sinh(arcsinh(sqrt(11)/4)/3) / (12*sqrt(11))) / sqrt(Pi), where r = A192918 = 0.54368901269207636157... is the real root of the equation r^2*(1+r) = 1-r. - Vaclav Kotesovec, Mar 17 2020, updated Oct 10 2024

A115276 Number of partitions of {1,...,n} into block sizes not a multiple of 4.

Original entry on oeis.org

1, 1, 2, 5, 14, 47, 173, 702, 3124, 14901, 76405, 417210, 2411466, 14731095, 94573911, 636575050, 4480990936, 32887804361, 251236573561, 1993395483746, 16397468177406, 139634290253907, 1229013163330947, 11166172488138322, 104593176077399652
Offset: 0

Views

Author

Christian G. Bower, Jan 18 2006

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
          irem(j, 4)=0, 0, binomial(n-1, j-1)*a(n-j)), j=1..n))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 17 2015
  • Mathematica
    a[n_] := a[n] = If[n == 0, 1, Sum[If[Mod[j, 4] == 0, 0, Binomial[n - 1, j - 1]*a[n - j]], {j, 1, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)

Formula

E.g.f.: exp(sinh(x)+(cosh(x)-cos(x))/2).

A187154 Expansion of psi(x^4) / phi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 4, 8, 15, 26, 44, 72, 114, 178, 272, 408, 605, 884, 1276, 1824, 2580, 3616, 5028, 6936, 9498, 12922, 17468, 23472, 31369, 41700, 55156, 72616, 95172, 124202, 161436, 209016, 269616, 346562, 443952, 566856, 721530, 915642, 1158608, 1461968, 1839789
Offset: 0

Views

Author

Michael Somos, Mar 08 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Since phi(-x) = 1 + 2*Sum_{k >= 1} (-1)^k*x^(k^2) == 1 (mod 2), it follows that the g.f. psi(x^4) / phi(-x) == psi(x^4) == Sum_{k >= 0} x^(2*k*(k+1)) (mod 2). Hence a(n) is odd iff n = 2*k*(k + 1) for some nonnegative integer k. - Peter Bala, Jan 07 2025

Examples

			1 + 2*x + 4*x^2 + 8*x^3 + 15*x^4 + 26*x^5 + 44*x^6 + 72*x^7 + 114*x^8 + ...
q + 2*q^3 + 4*q^5 + 8*q^7 + 15*q^9 + 26*q^11 + 44*q^13 + 72*q^15 + 114*q^17 + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 + x^k)^2 * (1 + x^(2*k)) * (1 + x^(4*k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 10 2015 *)
    a[n_]:= SeriesCoefficient[EllipticTheta[2, 0, q^2]/(2*Sqrt[q]* EllipticTheta[3, 0, -q]), {q, 0, n}]; Table[A187154[n], {n, 0, 50}] (* G. C. Greubel, Dec 04 2017 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^8 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)), n))}

Formula

Expansion of q^(-1/2) * eta(q^2) * eta(q^8)^2 / (eta(q)^2 * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [ 2, 1, 2, 2, 2, 1, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (32 t)) = 32^(-1/2) g(t) where q = exp(2 Pi i t) and g() is g.f. for A093085.
Convolution inverse of A093085. Convolution square is A107035.
a(n) ~ exp(sqrt(n)*Pi)/(16*n^(3/4)). - Vaclav Kotesovec, Sep 10 2015

A081055 Number of partitions of 2n in which no parts are multiples of 4.

Original entry on oeis.org

1, 2, 4, 9, 16, 29, 50, 82, 132, 208, 320, 484, 722, 1060, 1539, 2210, 3138, 4416, 6163, 8528, 11716, 15986, 21666, 29190, 39104, 52098, 69060, 91106, 119634, 156416, 203664, 264128, 341256, 439321, 563600, 720648, 918530, 1167154, 1478720
Offset: 0

Views

Author

Michael Somos, Mar 03 2003

Keywords

Comments

Euler transform of period 16 sequence [2,1,3,1,3,0,2,0,2,0,3,1,3,1,2,0,...].

Crossrefs

Programs

  • Mathematica
    Table[Count[IntegerPartitions[2n], x_ /; ! MemberQ [Mod[x, 4], 0, 2] ], {n, 0, 38}] (* Robert Price, Jul 28 2020 *)
  • PARI
    a(n)=local(X); if(n<0,0,X=x+x*O(x^(2*n)); polcoeff(eta(X^4)/eta(X),2*n))

Formula

G.f.: (sum_{n>=0} x^A074378(n))/(sum_n (-x)^n^2).
a(n) = A001935(2n).
a(n) ~ exp(Pi*sqrt(n)) / (2^(7/2) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017

A081056 Number of partitions of 2n+1 in which no parts are multiples of 4.

Original entry on oeis.org

1, 3, 6, 12, 22, 38, 64, 105, 166, 258, 395, 592, 876, 1280, 1846, 2636, 3728, 5222, 7256, 10006, 13696, 18624, 25169, 33808, 45164, 60022, 79366, 104457, 136870, 178572, 232044, 300368, 387366, 497804, 637568, 813910, 1035792, 1314214
Offset: 0

Views

Author

Michael Somos, Mar 03 2003

Keywords

Comments

Euler transform of period 16 sequence [3,0,2,1,2,1,3,0,3,1,2,1,2,0,3,0,...].

Crossrefs

Programs

Formula

G.f.: (sum_{n>=0} x^A074377(n))/(sum_n (-x)^n^2).
a(n) = A001935(2n+1).
a(n) ~ exp(Pi*sqrt(n)) / (2^(7/2) * n^(3/4)). - Vaclav Kotesovec, Nov 15 2017

A115275 Number of partitions of {1,...,n} into blocks such that no block size is repeated more than 3 times.

Original entry on oeis.org

1, 1, 2, 5, 14, 51, 187, 820, 3670, 18191, 97917, 554500, 3334465, 20871592, 138440031, 972083845, 6985171390, 52194795327, 412903730293, 3313067916192, 28017395030419, 241504438776956, 2189375704925081, 19771679215526507, 187677937412341677
Offset: 0

Views

Author

Christian G. Bower, Jan 18 2006

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)/j!*
          b(n-i*j, i-1), j=0..min(3, n/i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Sep 17 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j!*b[n - i*j, i-1], {j, 0, Min[3, n/i]}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Oct 29 2015, after Alois P. Heinz *)

Formula

E.g.f.: Product {m >= 1} (1+x^m/m!+(x^m/m!)^2+(x^m/m!)^3). [this e.g.f. is incorrect. - Vaclav Kotesovec, Oct 29 2015]

A115277 Number of partitions of {1,...,n} into blocks such that no even sized block is repeated.

Original entry on oeis.org

1, 1, 2, 5, 12, 37, 143, 562, 2320, 10941, 54865, 283890, 1604155, 9558226, 58668223, 384572975, 2631778832, 18576630237, 137919691717, 1060303298138, 8415786131309, 69538205444478, 591734670548037, 5194542789203877, 47127033586211659, 438972204436025198
Offset: 0

Views

Author

Christian G. Bower, Jan 18 2006

Keywords

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, add(
           multinomial(n, n-i*j, i$j)/j!*b(n-i*j, i-1), j=0..min(
           `if`(irem(i, 2)=0, 1, n), n/i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 08 2015
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[multinomial[n, Join[{n-i*j}, Array[i&, j]]]/j! * b[n-i*j, i-1], {j, 0, Min[If[Mod[i, 2]==0, 1, n], n/i]}]]]; a[n_] :=  b[n, n]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 25 2015, after Alois P. Heinz *)

Formula

E.g.f.: exp(sinh(x)) * Product {m >= 1} (1+x^(2*m)/(2*m)!).

A117147 Triangle read by rows: T(n,k) is the number of partitions of n with k parts in which no part occurs more than 3 times (n>=1, k>=1).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 3, 3, 2, 1, 3, 4, 3, 1, 1, 4, 5, 4, 2, 1, 4, 7, 6, 3, 1, 1, 5, 8, 9, 5, 1, 1, 5, 10, 11, 8, 3, 1, 6, 12, 14, 11, 5, 1, 1, 6, 14, 18, 15, 8, 2, 1, 7, 16, 23, 20, 11, 4, 1, 7, 19, 27, 27, 17, 6, 1, 1, 8, 21, 33, 34, 23, 10, 2, 1, 8, 24, 39, 43, 32, 15, 4, 1, 9
Offset: 1

Views

Author

Emeric Deutsch, Mar 07 2006

Keywords

Comments

Row n has floor(sqrt(6n+6)-3/2) terms. Row sums yield A001935. Sum(k*T(n,k),k>=0) = A117148(n).

Examples

			T(7,3) = 4 because we have [5,1,1], [4,2,1], [3,3,1] and [3,2,2].
Triangle starts:
1;
1, 1;
1, 1, 1;
1, 2, 1;
1, 2, 2, 1;
1, 3, 3, 2;
1, 3, 4, 3, 1;
		

Crossrefs

Programs

  • Maple
    g:=-1+product(1+t*x^j+t^2*x^(2*j)+t^3*x^(3*j),j=1..35): gser:=simplify(series(g,x=0,23)): for n from 1 to 18 do P[n]:=sort(coeff(gser,x^n)) od: for n from 1 to 18 do seq(coeff(P[n],t^j),j=1..floor(sqrt(6*n+6)-3/2)) od; # yields sequence in triangular form
    # second Maple program
    b:= proc(n, i) option remember; local j; if n=0 then 1
          elif i<1 then 0 else []; for j from 0 to min(3, n/i) do
          zip((x, y)->x+y, %, [0$j, b(n-i*j, i-1)], 0) od; %[] fi
        end:
    T:= n-> subsop(1=NULL, [b(n, n)])[]:
    seq(T(n), n=1..20);  # Alois P. Heinz, Jan 08 2013
  • Mathematica
    max = 18; g = -1+Product[1+t*x^j+t^2*x^(2j)+t^3*x^(3j), {j, 1, max}]; t[n_, k_] := SeriesCoefficient[g, {x, 0, n}, {t, 0, k}]; Table[DeleteCases[Table[t[n, k], {k, 1, n}], 0], {n, 1, max}] // Flatten (* Jean-François Alcover, Jan 08 2014 *)

Formula

G.f.: G(t,x) = -1+product(1+tx^j+t^2*x^(2j)+t^3*x^(3j), j=1..infinity).
Previous Showing 31-40 of 68 results. Next