cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-28 of 28 results.

A383985 Series expansion of the exponential generating function LambertW(1-exp(x)), see A000169.

Original entry on oeis.org

0, 1, -1, 4, -23, 181, -1812, 22037, -315569, 5201602, -97009833, 2019669961, -46432870222, 1168383075471, -31939474693297, 942565598033196, -29866348653695203, 1011335905644178273, -36446897413531401020, 1392821757824071815641, -56259101478392975833333
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Crossrefs

Composition of A000169 with signs and 1-exp(x).

Programs

  • Mathematica
    nn = 20; f[x_] := -Sum[k^(k - 1)*(1 - Exp[x])^k/k!, {k, nn}];
    Range[0, nn]! * CoefficientList[Series[f[x], {x, 0, nn}], x]

A383986 Expansion of the exponential generating function sqrt(4*exp(x) - exp(2*x) - 2) - 1.

Original entry on oeis.org

0, 1, -1, 1, -13, 61, -601, 5881, -73333, 1021861, -16334401, 290146561, -5707536253, 122821558861, -2873553719401, 72586328036041, -1969306486088773, 57106504958139061, -1762735601974347601, 57705363524117482321, -1996916624448159410893
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    nn = 20; f[x_] := -1 + Sqrt[1 + 2 x - x^2];
    Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]

A383988 Series expansion of the exponential generating function -postLie(1-exp(x)) where postLie(x) = -log((1 + sqrt(1-4*x)) / 2) (given by A006963).

Original entry on oeis.org

0, 1, -2, 12, -110, 1380, -22022, 426972, -9747950, 256176660, -7617417302, 252851339532, -9268406209790, 371843710214340, -16206868062692582, 762569209601624892, -38525315595630383630, 2079964082064837282420, -119513562475103977951862
Offset: 0

Views

Author

Michael De Vlieger, May 16 2025

Keywords

Comments

The series -postLie(-x) is the inverse for the substitution of the series comTrias(x), given by the suspension of the Koszul dual of comTrias. - Bérénice Delcroix-Oger, May 28 2025

Crossrefs

Cf. A002050, A006531, A084099, A097388, A101851, A114285, A225883, A383985, A383986, A383987, A383989. Composition of -A006963(-x) and exp(x)-1.

Programs

  • Mathematica
    nn = 18; f[x_] := Log[(1 + Sqrt[1 + 4*x])/2];
    Range[0, nn]! * CoefficientList[Series[f[-(1 - Exp[x])], {x, 0, nn}], x]

A032109 "BIJ" (reversible, indistinct, labeled) transform of 1,1,1,1,...

Original entry on oeis.org

1, 1, 2, 7, 38, 271, 2342, 23647, 272918, 3543631, 51123782, 811316287, 14045783798, 263429174191, 5320671485222, 115141595488927, 2657827340990678, 65185383514567951, 1692767331628422662, 46400793659664205567, 1338843898122192101558, 40562412499252036940911
Offset: 0

Views

Author

Keywords

Comments

Starting (1, 2, 7, 38, 271, ...) = A008292 * [1, 1, 2, 4, 8, ...]. - Gary W. Adamson, Dec 25 2008
The inverse binomial transform is 1, 0, 1, 3, 19, 135, 1171, 11823, 136459, ..., see A091346. - R. J. Mathar, Oct 17 2012
Stirling transform of A001710. - Anton Zakharov, Aug 06 2016
For n even (resp. n odd), a(n) counts the ordered partitions of {1,2,...,n} with an even (resp. odd) number of blocks, and a(n)-1 counts the ordered partitions of {1,2,...,n} with an odd (resp. even) number of blocks. - Jose A. Rodriguez, Feb 04 2021

Crossrefs

A000629, A000670, A002050, A032109, A052856, A076726 are all more-or-less the same sequence. - N. J. A. Sloane, Jul 04 2012
A052856(n)=2*a(n), if n>0.

Programs

  • Maple
    A032109 := proc(n)
        (A000670(n)+1)/2 ;
    end proc: # R. J. Mathar, Oct 17 2012
    a := n -> (polylog(-n, 1/2)+`if`(n=0,3,2))/4:
    seq(round(evalf(a(n), 32)), n=0..18); # Peter Luschny, Nov 03 2015
    # alternative Maple program:
    b:= proc(n, m) option remember; `if`(n=0, m!,
          add(b(n-1, max(m, j)), j=1..m+1))
        end:
    a:= n-> (b(n,0)+1)/2:
    seq(a(n), n=0..23);  # Alois P. Heinz, Sep 29 2017
  • Mathematica
    Table[(PolyLog[-n, 1/2] + 2 + KroneckerDelta[n])/4, {n, 0, 20}] (* Vladimir Reshetnikov, Nov 02 2015 *)
  • PARI
    a(n)=if(n<0,0,n!*polcoeff(subst((1-y^2/2)/(1-y),y,exp(x+x*O(x^n))-1),n))
    
  • PARI
    list(n)=my(v=Vec(subst((1-y^2/2)/(1-y),y,exp(x+x*O(x^n))-1)));vector(n+1,i,v[i]*(i-1)!) \\ Charles R Greathouse IV, Oct 17 2012

Formula

E.g.f.: (e^(2*x)-2*e^x-1)/(2*e^x-4).
a(n) = (A000670(n)+1)/2. - Vladeta Jovovic, Apr 13 2003
a(n) = A052875(n)/2 + 1. - Max Alekseyev, Jan 31 2021
a(n) ~ sqrt(Pi/2)*n^(n+1/2)/(2*log(2)^(n+1)*exp(n)). - Ilya Gutkovskiy, Aug 06 2016
a(n) = Sum_{s in S_n^even} Product_{i=1..n} binomial(i,s(i)-1), where s ranges over the set S_n^even of even permutations of [n]. - Jose A. Rodriguez, Feb 02 2021

A006485 a(n) = (2^(2^n + 1) + 1)/3.

Original entry on oeis.org

3, 11, 171, 43691, 2863311531, 12297829382473034411, 226854911280625642308916404954512140971, 77194726158210796949047323339125271902179989777093709359638389338608753093291
Offset: 1

Views

Author

Dennis S. Kluk (mathemagician(AT)ameritech.net)

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = A001045(2^n+1) = (3*a(n-1)^2 + 1)/2 - a(n-1). - Michael Somos, Mar 30 2020
a(n) = A070969(n)/3. - Alois P. Heinz, Mar 28 2023

A054255 Triangle T(n,k) (n >= 1, 0<=k<=n) giving number of preferential arrangements of n things beginning with k (transposed, then read by rows).

Original entry on oeis.org

1, 1, 2, 2, 5, 6, 6, 18, 25, 26, 24, 84, 134, 149, 150, 120, 480, 870, 1050, 1081, 1082, 720, 3240, 6600, 8700, 9302, 9365, 9366, 5040, 25200, 57120, 82320, 92526, 94458, 94585, 94586, 40320, 221760, 554400, 871920, 1038744, 1085364, 1091414, 1091669, 1091670
Offset: 1

Views

Author

Eugene McDonnell (Eemcd(AT)aol.com), May 05 2000

Keywords

Comments

Can be generated from Stirling_2 triangle A008277 (cf. A028246, which is intermediate between the two arrays).

Examples

			   1;
   1,  2;
   2,  5,   6;
   6, 18,  25,  26;
  24, 84, 134, 149, 150;
  ...
		

Crossrefs

Row sums give A000670. First 3 rows are A000629, A002050 = A000629 - 1, 2*A002051 = (A000629 - 2^m) (m >= 0).
Cf. A090665 (triangle with rows reversed).

Extensions

More terms from James Sellers, May 05 2000

A000154 Erroneous version of A003713.

Original entry on oeis.org

1, 1, 2, 7, 35, 228, 1834, 17382, 195866, 2487832, 35499576, 562356672, 9794156448, 186025364016, 3826961710272, 84775065603888, 2011929826983504
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

A052877 E.g.f.: exp(x)-1+log(-1/(-2+exp(x))).

Original entry on oeis.org

0, 2, 3, 7, 27, 151, 1083, 9367, 94587, 1091671, 14174523, 204495127, 3245265147, 56183135191, 1053716696763, 21282685940887, 460566381955707, 10631309363962711, 260741534058271803, 6771069326513690647
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

Previous name was: A simple grammar.

Crossrefs

a(n) = A000629(n-1)+1, n>0. Cf. A002050.

Programs

  • Maple
    spec := [S,{B=Set(Z,1 <= card),C=Cycle(B),S=Union(B,C)},labeled]: seq(combstruct[count](spec, size=n), n=0..20);
  • Mathematica
    CoefficientList[Series[E^x-1+Log[-1/(-2+E^x)], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)

Formula

E.g.f.: exp(x)-1+log(-1/(-2+exp(x)))
a(n) ~ (n-1)! / log(2)^n. - Vaclav Kotesovec, Sep 30 2013

Extensions

New name, using e.g.f., from Vaclav Kotesovec, Sep 30 2013
Previous Showing 21-28 of 28 results.