cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 48 results. Next

A117513 Number of ways of arranging 2*n tokens in a row, with 2 copies of each token from 1 through n, such that between every pair of tokens labeled i (i = 1..n-1) there is exactly one taken labeled i+1.

Original entry on oeis.org

1, 2, 12, 136, 2480, 66336, 2446528, 118984832, 7378078464, 568142287360, 53189920492544, 5949749335001088, 783686338494312448, 120058889459865165824, 21166245289132322242560, 4254864627502524070395904, 967406173145278971994898432, 247007221085479721384365129728
Offset: 1

Views

Author

Nan Zang (nzang(AT)cs.ucsd.edu), Apr 28 2006

Keywords

Comments

From Paul Barry, Oct 12 2009: (Start)
The aerated sequence is (2^(n/2 - 1) + 0^(n/2)/2)*((1 + (-1)^n)/2)*n!*[x^n](1 + x*tan(x/2)).
Multiples of the unsigned Genocchi numbers A110501: (1, 1, 3, 17, 155,...)*(1, 2, 4, 8, 16,...). (End)

Crossrefs

Programs

  • Maple
    a := n -> (-2)^n*(1 - 2^(2*n))*bernoulli(2*n);
    seq(a(n), n = 1..18); # Peter Luschny, Jul 26 2021
  • Mathematica
    Array[(-2)^#*(1 - 2^(2 #))*BernoulliB[2 #] &, 18] (* Michael De Vlieger, Jul 26 2021 *)
  • Sage
    # Algorithm of L. Seidel (1877)
    # n -> [a(1), ..., a(n)] for n >= 1.
    def A117513_list(n) :
        D = [0]*(n+2); D[1] = 1
        R = []; z = 1/2; b = True
        for i in(0..2*n-1) :
            h = i//2 + 1
            if b :
                for k in range(h-1, 0, -1) : D[k] += D[k+1]
                z *= 2
            else :
                for k in range(1, h+1, 1) :  D[k] += D[k-1]
            b = not b
            if b : R.append(D[h]*z)
        return R
    A117513_list(15) # Peter Luschny, Jun 29 2012

Formula

G.f.: 1/(1-2*x/(1-4*x/(1-8*x/(1-12*x/(1-18*x/(1-24*x/(1-32*x/(1-.../(1-2* floor((n+2)^2/4)*x/(1-... (continued fraction). - Paul Barry, Dec 03 2009
G.f.: T(0), where T(k) = 1 - x*(2*k+2)*(k+1)/( x*(2*k+2)*(k+1) - 1/( 1 - x*(2*k+2)*(k+2)/( x*(2*k+2)*(k+2) - 1/T(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) = (-2)^n*(1 - 2^(2*n))*Bernoulli(2*n). - Peter Luschny, Jul 26 2021

Extensions

More terms from Paul Barry, Oct 12 2009

A273352 a(n) = 2^(2n+2) F(n) where F(n) is Ramanujan's F(n) = Sum_{k>=1} k^(4n-1)/(e^(Pi*k)-1) - 16^n* Sum_{k>=1} k^(4n-1)/(e^(4*Pi*k)-1).

Original entry on oeis.org

1, 34, 11056, 14873104, 56814228736, 495812444583424, 8575634961418940416, 265929039218907754399744, 13722623393637762299131396096, 1112372064432735526930220874072064, 135292015985218004848567636630910795776, 23782283324940089109797537284278352042000384
Offset: 1

Views

Author

Marko Riedel, May 20 2016

Keywords

Comments

Bisection of the reduced tangent numbers, A002105. This follows from the formulas. - Franklin T. Adams-Watters, May 22 2016

Crossrefs

Cf. A002105.
Cf. A000182 (m=2), A293951 (m=3), this seq (m=4), A318258 (m=5).

Programs

  • Maple
    S := proc(n, k) option remember;
    if k=0 then `if`(n=0, 1, 0) else S(n, k-1) + S(n-1, n-k) fi end:
    A273352 := n -> S(4*n-1, 4*n-1)/2^(2*n-1):
    seq(A273352(n), n=1..12); # Peter Luschny, Jan 18 2017
  • Mathematica
    Table[2^(2*n + 2)*BernoulliB[4*n]*(1 - 2^(4*n))/(8*n), {n, 1, 10}] (* G. C. Greubel, May 21 2016 *)
    (* Function LMLlist defined in A293951 *)
    LMLlist[4, 13] (* Peter Luschny, Aug 26 2018 *)

Formula

a(n) = 2^{2*n+2} * Bernoulli(4*n) * (1-2^(4*n))/(8*n).

A018893 Blasius sequence: from coefficients in expansion of solution to Blasius's equation in boundary layer theory.

Original entry on oeis.org

1, 1, 11, 375, 27897, 3817137, 865874115, 303083960103, 155172279680289, 111431990979621729, 108511603921116483579, 139360142400556127213655, 230624017175131841824732233, 482197541715276031774659298833
Offset: 0

Views

Author

Stan Richardson (stan(AT)maths.ed.ac.uk)

Keywords

Comments

Number of increasing trilabeled unordered trees. - Markus Kuba, Nov 18 2014

Examples

			A(x) = 1 + 1/6*x^3 + 11/720*x^6 + 25/24192*x^9 + 9299/159667200*x^12 + ...
G.f. = 1 + x + 11*x^3 + 375*x^4 + 27897*x^5 + 3817137*x^6 + ...
		

References

  • H. T. Davis: Introduction to Nonlinear Differential and Integral Equations (Dover 1962), page 403.

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[k_] := a[k] = Sum[Binomial[3*k-1, 3*j]*a[j]*a[k-j-1], {j, 0, k-1}]; Table[a[k], {k, 0, 13}] (* Jean-François Alcover, Oct 28 2014 *)

Formula

E.g.f. A(x) satisfies (d^3/dx^3)log(A(x)) = A(x). - Vladeta Jovovic, Oct 24 2003
Lim_{n->infinity} (a(n)/(3*n+2)!)^(1/n) = 0.03269425181024... . - Vaclav Kotesovec, Oct 28 2014
T(z) = log(A(z)) satisfies T'''(z)=exp(T(z)), such that F(z)=T'(z) satisfies a Blasius type equation: F'''(z)-F(z)*F''(z)=0. - Markus Kuba, Nov 18 2014
a(n) = Sum_{v = 0..n-1} binomial(3*n-1, 3*v) * a(v) * a(n-1-v) for n >= 1 with a(0) = 1 (Blasius' recurrence). - Petros Hadjicostas, Aug 01 2019

Extensions

Corrected and extended by Vladeta Jovovic, Oct 24 2003

A093049 n-1 minus exponent of 2 in n, a(0) = 0.

Original entry on oeis.org

0, 0, 0, 2, 1, 4, 4, 6, 4, 8, 8, 10, 9, 12, 12, 14, 11, 16, 16, 18, 17, 20, 20, 22, 20, 24, 24, 26, 25, 28, 28, 30, 26, 32, 32, 34, 33, 36, 36, 38, 36, 40, 40, 42, 41, 44, 44, 46, 43, 48, 48, 50, 49, 52, 52, 54, 52, 56, 56, 58, 57, 60, 60, 62, 57, 64, 64, 66, 65, 68
Offset: 0

Views

Author

Ralf Stephan, Mar 16 2004

Keywords

Examples

			G.f. = 2*x^3 + x^4 + 4*x^5 + 4*x^6 + 6*x^7 + 4*x^8 + 8*x^9 + 8*x^10 + ... - _Michael Somos_, Jan 25 2020
		

Crossrefs

a(n) = n - A007814(n) - 1 = A093048(n) - 1, n>0.
a(n) is the exponent of 2 in A001761(n+1), A002105(n), A002682(n-1), A006963(n), A036770(n-1), A059837(n), A084623(n), |A003707(n)|, |A011859(n)|.

Programs

  • Mathematica
    a[ n_] := If[ n == 0, 0, n - 1 - IntegerExponent[n, 2]]; (* Michael Somos, Jan 25 2020 *)
  • PARI
    a(n)=if(n<1,0,if(n%2==0,a(n/2)+n/2-1,n-1))
    
  • PARI
    {a(n) = if( n, n - 1 - valuation(n, 2))}; /* Michael Somos, Jan 25 2020 */
    
  • Python
    def A093049(n): return n-1-(~n& n-1).bit_length() if n else 0 # Chai Wah Wu, Jul 07 2022

Formula

Recurrence: a(2n) = a(n) + n - 1, a(2n+1) = 2n.
G.f.: sum(k>=0, t^3(t+2)/(1-t^2)^2, t=x^2^k).

A292604 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x).

Original entry on oeis.org

1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 20 2017

Keywords

Comments

The generalized Eulerian polynomials F_{m}(x) are defined F_{m; 0}(x) = 1 for all m >= 0 and for n > 0:
F_{0; n}(x) = Sum_{k=0..n} A097805(n, k)*(x-1)^(n-k) with coeffs. in A129186.
F_{1; n}(x) = Sum_{k=0..n} A131689(n, k)*(x-1)^(n-k) with coeffs. in A173018.
F_{2; n}(x) = Sum_{k=0..n} A241171(n, k)*(x-1)^(n-k) with coeffs. in A292604.
F_{3; n}(x) = Sum_{k=0..n} A278073(n, k)*(x-1)^(n-k) with coeffs. in A292605.
F_{4; n}(x) = Sum_{k=0..n} A278074(n, k)*(x-1)^(n-k) with coeffs. in A292606.
The case m = 1 are the Eulerian polynomials whose coefficients are the Eulerian numbers which are displayed in Euler's triangle A173018.
Evaluated at x in {-1, 1, 0} these families of polynomials give for the first few m:
F_{m} : F_{0} F_{1} F_{2} F_{3} F_{4}
x = 1: A000012 A000142 A000680 A014606 A014608 ... (m*n)!/m!^n
x = 0: -- A000012 A000364 A002115 A211212 ... m-alternating permutations of length m*n.
Note that the constant terms of the polynomials are the generalized Euler numbers as defined in A181985. In this sense generalized Euler numbers are also generalized Eulerian numbers.

Examples

			Triangle starts:
[n\k][    0        1        2       3     4  5  6]
--------------------------------------------------
[0][      1]
[1][      1,       0]
[2][      5,       1,       0]
[3][     61,      28,       1,      0]
[4][   1385,    1011,     123,      1,    0]
[5][  50521,   50666,   11706,    506,    1, 0]
[6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]
		

References

  • G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.

Crossrefs

F_{0} = A129186, F_{1} = A173018, F_{2} is this triangle, F_{3} = A292605, F_{4} = A292606.
First column: A000364. Row sums: A000680. Alternating row sums: A002105.

Programs

  • Maple
    Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
    A292604_row := proc(n) if n = 0 then return [1] fi;
    add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
    for n from 0 to 6 do A292604_row(n) od;
  • Mathematica
    T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0;
    F[2, 0][] = 1; F[2, n][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}];
    row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]];
    Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)
  • Sage
    def A292604_row(n):
        if n == 0: return [1]
        S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
        return expand(S).list() + [0]
    for n in (0..6): print(A292604_row(n))

Formula

F_{2; n}(x) = Sum_{k=0..n} A241171(n, k)*(x-1)^(n-k) for n>0 and F_{2; 0}(x) = 1.

A322231 E.g.f.: C(x,k) = 1 + Integral S(x,k)*D(x,k)^2 dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1, as a triangle of coefficients read by rows.

Original entry on oeis.org

1, 1, 0, 1, 8, 0, 1, 88, 136, 0, 1, 816, 6240, 3968, 0, 1, 7376, 195216, 513536, 176896, 0, 1, 66424, 5352544, 39572864, 51880064, 11184128, 0, 1, 597864, 139127640, 2458228480, 8258202240, 6453433344, 951878656, 0, 1, 5380832, 3535586112, 137220256000, 994697838080, 1889844670464, 978593947648, 104932671488, 0, 1, 48427552, 88992306208, 7233820923904, 102950036177920, 398800479698944, 485265505927168, 178568645312512, 14544442556416, 0
Offset: 0

Views

Author

Paul D. Hanna, Dec 14 2018

Keywords

Comments

Equals a row reversal of triangle A325222.
Compare to cn(x,k) = 1 - Integral sn(x,k)*dn(x,k) dx, where sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions (see triangle A060627).
Compare also to Michael Pawellek's generalized elliptic functions.

Examples

			E.g.f.: C(x,k) = 1 + x^2/2! + (8*k^2 + 1)*x^4/4! + (136*k^4 + 88*k^2 + 1)*x^6/6! + (3968*k^6 + 6240*k^4 + 816*k^2 + 1)*x^8/8! + (176896*k^8 + 513536*k^6 + 195216*k^4 + 7376*k^2 + 1)*x^10/10! + (11184128*k^10 + 51880064*k^8 + 39572864*k^6 + 5352544*k^4 + 66424*k^2 + 1)*x^12/12! + (951878656*k^12 + 6453433344*k^10 + 8258202240*k^8 + 2458228480*k^6 + 139127640*k^4 + 597864*k^2 + 1)*x^14/14! + ...
such that C(x,k)^2 - S(x,k)^2 = 1.
This triangle of coefficients T(n,j) of x^(2*n)*k^(2*j)/(2*n)! in e.g.f. C(x,k) begins:
1;
1, 0;
1, 8, 0;
1, 88, 136, 0;
1, 816, 6240, 3968, 0;
1, 7376, 195216, 513536, 176896, 0;
1, 66424, 5352544, 39572864, 51880064, 11184128, 0;
1, 597864, 139127640, 2458228480, 8258202240, 6453433344, 951878656, 0;
1, 5380832, 3535586112, 137220256000, 994697838080, 1889844670464, 978593947648, 104932671488, 0;
1, 48427552, 88992306208, 7233820923904, 102950036177920, 398800479698944, 485265505927168, 178568645312512, 14544442556416, 0; ...
RELATED SERIES.
The related series S(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
S(x,k) = x + (2*k^2 + 1)*x^3/3! + (16*k^4 + 28*k^2 + 1)*x^5/5! + (272*k^6 + 1032*k^4 + 270*k^2 + 1)*x^7/7! + (7936*k^8 + 52736*k^6 + 36096*k^4 + 2456*k^2 + 1)*x^9/9! + (353792*k^10 + 3646208*k^8 + 4766048*k^6 + 1035088*k^4 + 22138*k^2 + 1)*x^11/11! + (22368256*k^12 + 330545664*k^10 + 704357760*k^8 + 319830400*k^6 + 27426960*k^4 + 199284*k^2 + 1)*x^13/13! + ...
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (5*k^4 + 4*k^2)*x^4/4! + (61*k^6 + 148*k^4 + 16*k^2)*x^6/6! + (1385*k^8 + 6744*k^6 + 2832*k^4 + 64*k^2)*x^8/8! + (50521*k^10 + 410456*k^8 + 383856*k^6 + 47936*k^4 + 256*k^2)*x^10/10! + (2702765*k^12 + 32947964*k^10 + 54480944*k^8 + 17142784*k^6 + 780544*k^4 + 1024*k^2)*x^12/12! + (199360981*k^14 + 3402510924*k^12 + 8760740640*k^10 + 5199585280*k^8 + 686711040*k^6 + 12555264*k^4 + 4096*k^2)*x^14/14! + ...
		

Crossrefs

Cf. A322230 (S), A322232 (D), A001818 (row sums), A002105.
Cf. A325222 (row reversal).

Programs

  • PARI
    N=10;
    {S=x;C=1;D=1; for(i=1,2*N, S = intformal(C*D^2 +O(x^(2*N+1))); C = 1 + intformal(S*D^2); D = 1 + k^2*intformal(S*C*D));}
    for(n=0,N, for(j=0,n, print1( (2*n)!*polcoeff(polcoeff(C,2*n,x),2*j,k),", ")) ;print(""))

Formula

E.g.f. C = C(x,k) = Sum_{n>=0} Sum_{j=0..n} T(n,j) * x^(2*n) * k^(2*j) / (2*n)!, along with related series S = S(x,k) and D = D(x,k), satisfies:
(1a) S = Integral C*D^2 dx.
(1b) C = 1 + Integral S*D^2 dx.
(1c) D = 1 + k^2 * Integral S*C*D dx.
(2a) C^2 - S^2 = 1.
(2b) D^2 - k^2*S^2 = 1.
(3a) C + S = exp( Integral D^2 dx ).
(3b) D + k*S = exp( k * Integral C*D dx ).
(4a) S = sinh( Integral D^2 dx ).
(4b) S = sinh( k * Integral C*D dx ) / k.
(4c) C = cosh( Integral D^2 dx ).
(4d) D = cosh( k * Integral C*D dx ).
(5a) d/dx S = C*D^2.
(5b) d/dx C = S*D^2.
(5c) d/dx D = k^2 * S*C*D.
From Paul D. Hanna, Mar 31 2019, Apr 20 2019 (Start):
Given sn(x,k), cn(x,k), and dn(x,k) are Jacobi elliptic functions, with i^2 = -1, k' = sqrt(1-k^2), then
(6a) S = -i * sn( i * Integral D dx, k),
(6b) C = cn( i * Integral D dx, k),
(6c) D = dn( i * Integral D dx, k).
(7a) S = sc( Integral D dx, k') = sn(Integral D dx, k')/cn(Integral D dx, k'),
(7b) C = nc( Integral D dx, k') = 1/cn(Integral D dx, k'),
(7c) D = dc( Integral D dx, k') = dn(Integral D dx, k')/cn(Integral D dx, k'). (End)
Row sums equal ( (2*n)!/(n!*2^n) )^2 = A001818(n), the squares of the odd double factorials.
Diagonal T(n+1,n) = 2^n*A002105(n+1), for n>=0, where A002105 gives the reduced tangent numbers.

A327000 A(n, k) = A309522(n, k) - A327001(n, k) for n >= 0 and k >= 3, square array read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 6, 3, 9, 26, 10, 117, 68, 100, 35, 2574, 4500, 517, 365, 126, 70005, 748616, 199155, 4163, 1302, 462, 2082759, 192426260, 282846568, 10499643, 36180, 4606, 1716, 65061234, 59688349943, 799156187475, 141482705378, 663488532, 341733, 16284
Offset: 0

Views

Author

Peter Luschny, Aug 12 2019

Keywords

Examples

			Array starts:
n\k [  3    4        5            6                 7 ]
[0]    1,   6,       26,          100,              365, ...            [A125107]
[1]    1,   9,       68,          517,              4163, ...           [A048742]
[2]    3,   117,     4500,        199155,           10499643, ...       [A326995]
[3]    10,  2574,    748616,      282846568,        141482705378, ...   [A327002]
[4]    35,  70005,   192426260,   799156187475,     4961959681629275, ...
[5]    126, 2082759, 59688349943, 3097220486457142, 278271624962638244163, ...
   A001700,
		

Crossrefs

Programs

  • Maple
    ListTools:-Flatten([seq(seq(A309522(n-k, k) - A327001(n-k, k), k=3..n), n=3..10)]);

Formula

The columns for k = 0, 1, 2 are suppressed as they are identical 0.
A(0, k) = A000108(k) - A011782(k).
A(1, k) = A000142(k) - A000110(k).
A(2, k) = A002105(k) - A005046(k-1) for k >= 1.
A(3, k) = A018893(k) - A291973(k).
A(4, k) = A326999(k) - A291975(k).

A117514 Number of ways of arranging 2n tokens in a row, with 2 copies of each token from 1 through n, such that the first token is a 1 and between every pair of tokens labeled i (i=1..n) there is exactly one taken labeled (i+1 mod n).

Original entry on oeis.org

1, 1, 2, 18, 248, 5560, 174752
Offset: 1

Views

Author

Nan Zang (nzang(AT)cs.ucsd.edu), Apr 28 2006

Keywords

Crossrefs

A117515 Number of ways of arranging 2n tokens in a row, with 2 copies of each token from 1 through n, such that between every pair of tokens labeled i (i=1..n) there is exactly one taken labeled (i+1 mod n).

Original entry on oeis.org

1, 2, 6, 72, 1240, 33360
Offset: 1

Views

Author

Nan Zang (nzang(AT)cs.ucsd.edu), Apr 28 2006

Keywords

Crossrefs

A154604 Hankel transform of reduced tangent numbers.

Original entry on oeis.org

1, 1, 3, 54, 9720, 26244000, 1488034800000, 2362404048480000000, 135019896025206528000000000, 347259290825980971841536000000000000, 49121618545275670528799969525760000000000000000
Offset: 0

Views

Author

Paul Barry, Jan 12 2009

Keywords

Comments

Hankel transform of A002105 (with interpolated zeros).
Hankel transform of A154603.

Crossrefs

Programs

  • Magma
    [n eq 0 select 1 else (&*[(Binomial(k+1,2))^(n-k+1): k in [1..n]]): n in [0..15]]; // G. C. Greubel, May 30 2024
    
  • Mathematica
    Table[Product[(k*(k+1)/2)^(n - k + 1), {k, 1, n}], {n, 0, 12}] (* Vaclav Kotesovec, Nov 13 2022 *)
  • PARI
    a(n) = prod(k=1, n, binomial(k+1,2)^(n-k+1)); \\ Michel Marcus, Nov 13 2022
    
  • SageMath
    [product((binomial(k+1,2))^(n-k+1) for k in range(1,n+1)) for n in range(16)] # G. C. Greubel, May 30 2024

Formula

a(n) = Product_{k=1..n} C(k+1,2)^(n-k+1).
a(n) ~ n^(n^2 + 3*n + 7/3) * Pi^(n + 3/2) / (A^2 * 2^((n^2 - n - 3)/2) * exp(3*n^2/2 + 3*n - 1/6)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 13 2022
Previous Showing 21-30 of 48 results. Next