A117513
Number of ways of arranging 2*n tokens in a row, with 2 copies of each token from 1 through n, such that between every pair of tokens labeled i (i = 1..n-1) there is exactly one taken labeled i+1.
Original entry on oeis.org
1, 2, 12, 136, 2480, 66336, 2446528, 118984832, 7378078464, 568142287360, 53189920492544, 5949749335001088, 783686338494312448, 120058889459865165824, 21166245289132322242560, 4254864627502524070395904, 967406173145278971994898432, 247007221085479721384365129728
Offset: 1
Nan Zang (nzang(AT)cs.ucsd.edu), Apr 28 2006
-
a := n -> (-2)^n*(1 - 2^(2*n))*bernoulli(2*n);
seq(a(n), n = 1..18); # Peter Luschny, Jul 26 2021
-
Array[(-2)^#*(1 - 2^(2 #))*BernoulliB[2 #] &, 18] (* Michael De Vlieger, Jul 26 2021 *)
-
# Algorithm of L. Seidel (1877)
# n -> [a(1), ..., a(n)] for n >= 1.
def A117513_list(n) :
D = [0]*(n+2); D[1] = 1
R = []; z = 1/2; b = True
for i in(0..2*n-1) :
h = i//2 + 1
if b :
for k in range(h-1, 0, -1) : D[k] += D[k+1]
z *= 2
else :
for k in range(1, h+1, 1) : D[k] += D[k-1]
b = not b
if b : R.append(D[h]*z)
return R
A117513_list(15) # Peter Luschny, Jun 29 2012
A273352
a(n) = 2^(2n+2) F(n) where F(n) is Ramanujan's F(n) = Sum_{k>=1} k^(4n-1)/(e^(Pi*k)-1) - 16^n* Sum_{k>=1} k^(4n-1)/(e^(4*Pi*k)-1).
Original entry on oeis.org
1, 34, 11056, 14873104, 56814228736, 495812444583424, 8575634961418940416, 265929039218907754399744, 13722623393637762299131396096, 1112372064432735526930220874072064, 135292015985218004848567636630910795776, 23782283324940089109797537284278352042000384
Offset: 1
-
S := proc(n, k) option remember;
if k=0 then `if`(n=0, 1, 0) else S(n, k-1) + S(n-1, n-k) fi end:
A273352 := n -> S(4*n-1, 4*n-1)/2^(2*n-1):
seq(A273352(n), n=1..12); # Peter Luschny, Jan 18 2017
-
Table[2^(2*n + 2)*BernoulliB[4*n]*(1 - 2^(4*n))/(8*n), {n, 1, 10}] (* G. C. Greubel, May 21 2016 *)
(* Function LMLlist defined in A293951 *)
LMLlist[4, 13] (* Peter Luschny, Aug 26 2018 *)
A018893
Blasius sequence: from coefficients in expansion of solution to Blasius's equation in boundary layer theory.
Original entry on oeis.org
1, 1, 11, 375, 27897, 3817137, 865874115, 303083960103, 155172279680289, 111431990979621729, 108511603921116483579, 139360142400556127213655, 230624017175131841824732233, 482197541715276031774659298833
Offset: 0
Stan Richardson (stan(AT)maths.ed.ac.uk)
A(x) = 1 + 1/6*x^3 + 11/720*x^6 + 25/24192*x^9 + 9299/159667200*x^12 + ...
G.f. = 1 + x + 11*x^3 + 375*x^4 + 27897*x^5 + 3817137*x^6 + ...
- H. T. Davis: Introduction to Nonlinear Differential and Integral Equations (Dover 1962), page 403.
- Vaclav Kotesovec, Table of n, a(n) for n = 0..180
- Heinrich Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung, Inaugural Dissertation, Georg-August-Universität Göttingen, Leipzig, 1907; see p. 8 (a(6) = c_6 and a(7) = c_7 are wrong in the dissertation) [USA access only].
- Heinrich Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z. Math. u. Physik 56 (1908), 1-37; see p. 8 (a(6) = c_6 has been corrected, while a(7) = c_7 was re-calculated incorrectly!).
- Heinrich Blasius, Grenzschichten in Flüssigkeiten mit kleiner Reibung, Z. Math. u. Physik 56 (1908), 1-37 [English translation by J. Vanier on behalf of the National Advisory Committee for Aeronautics (NACA), 1950]; see p. 8 (a(6) = c_6 has been corrected, while a(7) = c_7 was re-calculated incorrectly!).
- Steven R. Finch, Prandtl-Blasius Flow. [Cached copy, with permission of the author]
- W. H. Hager, Blasius: A life in research and education, Exp. Fluids 34(5) (2003), 566-571.
- Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, arXiv:1411.4587 [math.CO], 2014.
- Markus Kuba and Alois Panholzer, Combinatorial families of multilabelled increasing trees and hook-length formulas, Discrete Mathematics 339(1) (2016), 227-254.
- Ronald Orozco López, Solution of the Differential Equation y^(k)= e^(a*y), Special Values of Bell Polynomials and (k,a)-Autonomous Coefficients, Universidad de los Andes (Colombia 2021).
- Hans Salié, Über die Koeffizienten der Blasiusschen Reihen, Math. Nachr. 14 (1955), 241-248 (1956). [He generalizes the Blasius numbers.]
- Wikipedia, Paul Richard Heinrich Blasius.
-
a[0] = 1; a[k_] := a[k] = Sum[Binomial[3*k-1, 3*j]*a[j]*a[k-j-1], {j, 0, k-1}]; Table[a[k], {k, 0, 13}] (* Jean-François Alcover, Oct 28 2014 *)
A093049
n-1 minus exponent of 2 in n, a(0) = 0.
Original entry on oeis.org
0, 0, 0, 2, 1, 4, 4, 6, 4, 8, 8, 10, 9, 12, 12, 14, 11, 16, 16, 18, 17, 20, 20, 22, 20, 24, 24, 26, 25, 28, 28, 30, 26, 32, 32, 34, 33, 36, 36, 38, 36, 40, 40, 42, 41, 44, 44, 46, 43, 48, 48, 50, 49, 52, 52, 54, 52, 56, 56, 58, 57, 60, 60, 62, 57, 64, 64, 66, 65, 68
Offset: 0
G.f. = 2*x^3 + x^4 + 4*x^5 + 4*x^6 + 6*x^7 + 4*x^8 + 8*x^9 + 8*x^10 + ... - _Michael Somos_, Jan 25 2020
-
a[ n_] := If[ n == 0, 0, n - 1 - IntegerExponent[n, 2]]; (* Michael Somos, Jan 25 2020 *)
-
a(n)=if(n<1,0,if(n%2==0,a(n/2)+n/2-1,n-1))
-
{a(n) = if( n, n - 1 - valuation(n, 2))}; /* Michael Somos, Jan 25 2020 */
-
def A093049(n): return n-1-(~n& n-1).bit_length() if n else 0 # Chai Wah Wu, Jul 07 2022
A292604
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x).
Original entry on oeis.org
1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0
Offset: 0
Triangle starts:
[n\k][ 0 1 2 3 4 5 6]
--------------------------------------------------
[0][ 1]
[1][ 1, 0]
[2][ 5, 1, 0]
[3][ 61, 28, 1, 0]
[4][ 1385, 1011, 123, 1, 0]
[5][ 50521, 50666, 11706, 506, 1, 0]
[6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]
- G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.
-
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
A292604_row := proc(n) if n = 0 then return [1] fi;
add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292604_row(n) od;
-
T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0;
F[2, 0][] = 1; F[2, n][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}];
row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]];
Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)
-
def A292604_row(n):
if n == 0: return [1]
S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..6): print(A292604_row(n))
A322231
E.g.f.: C(x,k) = 1 + Integral S(x,k)*D(x,k)^2 dx, such that C(x,k)^2 - S(x,k)^2 = 1, and D(x,k)^2 - k^2*S(x,k)^2 = 1, as a triangle of coefficients read by rows.
Original entry on oeis.org
1, 1, 0, 1, 8, 0, 1, 88, 136, 0, 1, 816, 6240, 3968, 0, 1, 7376, 195216, 513536, 176896, 0, 1, 66424, 5352544, 39572864, 51880064, 11184128, 0, 1, 597864, 139127640, 2458228480, 8258202240, 6453433344, 951878656, 0, 1, 5380832, 3535586112, 137220256000, 994697838080, 1889844670464, 978593947648, 104932671488, 0, 1, 48427552, 88992306208, 7233820923904, 102950036177920, 398800479698944, 485265505927168, 178568645312512, 14544442556416, 0
Offset: 0
E.g.f.: C(x,k) = 1 + x^2/2! + (8*k^2 + 1)*x^4/4! + (136*k^4 + 88*k^2 + 1)*x^6/6! + (3968*k^6 + 6240*k^4 + 816*k^2 + 1)*x^8/8! + (176896*k^8 + 513536*k^6 + 195216*k^4 + 7376*k^2 + 1)*x^10/10! + (11184128*k^10 + 51880064*k^8 + 39572864*k^6 + 5352544*k^4 + 66424*k^2 + 1)*x^12/12! + (951878656*k^12 + 6453433344*k^10 + 8258202240*k^8 + 2458228480*k^6 + 139127640*k^4 + 597864*k^2 + 1)*x^14/14! + ...
such that C(x,k)^2 - S(x,k)^2 = 1.
This triangle of coefficients T(n,j) of x^(2*n)*k^(2*j)/(2*n)! in e.g.f. C(x,k) begins:
1;
1, 0;
1, 8, 0;
1, 88, 136, 0;
1, 816, 6240, 3968, 0;
1, 7376, 195216, 513536, 176896, 0;
1, 66424, 5352544, 39572864, 51880064, 11184128, 0;
1, 597864, 139127640, 2458228480, 8258202240, 6453433344, 951878656, 0;
1, 5380832, 3535586112, 137220256000, 994697838080, 1889844670464, 978593947648, 104932671488, 0;
1, 48427552, 88992306208, 7233820923904, 102950036177920, 398800479698944, 485265505927168, 178568645312512, 14544442556416, 0; ...
RELATED SERIES.
The related series S(x,k), where C(x,k)^2 - S(x,k)^2 = 1, starts
S(x,k) = x + (2*k^2 + 1)*x^3/3! + (16*k^4 + 28*k^2 + 1)*x^5/5! + (272*k^6 + 1032*k^4 + 270*k^2 + 1)*x^7/7! + (7936*k^8 + 52736*k^6 + 36096*k^4 + 2456*k^2 + 1)*x^9/9! + (353792*k^10 + 3646208*k^8 + 4766048*k^6 + 1035088*k^4 + 22138*k^2 + 1)*x^11/11! + (22368256*k^12 + 330545664*k^10 + 704357760*k^8 + 319830400*k^6 + 27426960*k^4 + 199284*k^2 + 1)*x^13/13! + ...
The related series D(x,k), where D(x,k)^2 - k^2*S(x,k)^2 = 1, starts
D(x,k) = 1 + k^2*x^2/2! + (5*k^4 + 4*k^2)*x^4/4! + (61*k^6 + 148*k^4 + 16*k^2)*x^6/6! + (1385*k^8 + 6744*k^6 + 2832*k^4 + 64*k^2)*x^8/8! + (50521*k^10 + 410456*k^8 + 383856*k^6 + 47936*k^4 + 256*k^2)*x^10/10! + (2702765*k^12 + 32947964*k^10 + 54480944*k^8 + 17142784*k^6 + 780544*k^4 + 1024*k^2)*x^12/12! + (199360981*k^14 + 3402510924*k^12 + 8760740640*k^10 + 5199585280*k^8 + 686711040*k^6 + 12555264*k^4 + 4096*k^2)*x^14/14! + ...
-
N=10;
{S=x;C=1;D=1; for(i=1,2*N, S = intformal(C*D^2 +O(x^(2*N+1))); C = 1 + intformal(S*D^2); D = 1 + k^2*intformal(S*C*D));}
for(n=0,N, for(j=0,n, print1( (2*n)!*polcoeff(polcoeff(C,2*n,x),2*j,k),", ")) ;print(""))
A327000
A(n, k) = A309522(n, k) - A327001(n, k) for n >= 0 and k >= 3, square array read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 6, 3, 9, 26, 10, 117, 68, 100, 35, 2574, 4500, 517, 365, 126, 70005, 748616, 199155, 4163, 1302, 462, 2082759, 192426260, 282846568, 10499643, 36180, 4606, 1716, 65061234, 59688349943, 799156187475, 141482705378, 663488532, 341733, 16284
Offset: 0
Array starts:
n\k [ 3 4 5 6 7 ]
[0] 1, 6, 26, 100, 365, ... [A125107]
[1] 1, 9, 68, 517, 4163, ... [A048742]
[2] 3, 117, 4500, 199155, 10499643, ... [A326995]
[3] 10, 2574, 748616, 282846568, 141482705378, ... [A327002]
[4] 35, 70005, 192426260, 799156187475, 4961959681629275, ...
[5] 126, 2082759, 59688349943, 3097220486457142, 278271624962638244163, ...
A001700,
-
ListTools:-Flatten([seq(seq(A309522(n-k, k) - A327001(n-k, k), k=3..n), n=3..10)]);
A117514
Number of ways of arranging 2n tokens in a row, with 2 copies of each token from 1 through n, such that the first token is a 1 and between every pair of tokens labeled i (i=1..n) there is exactly one taken labeled (i+1 mod n).
Original entry on oeis.org
1, 1, 2, 18, 248, 5560, 174752
Offset: 1
Nan Zang (nzang(AT)cs.ucsd.edu), Apr 28 2006
A117515
Number of ways of arranging 2n tokens in a row, with 2 copies of each token from 1 through n, such that between every pair of tokens labeled i (i=1..n) there is exactly one taken labeled (i+1 mod n).
Original entry on oeis.org
1, 2, 6, 72, 1240, 33360
Offset: 1
Nan Zang (nzang(AT)cs.ucsd.edu), Apr 28 2006
A154604
Hankel transform of reduced tangent numbers.
Original entry on oeis.org
1, 1, 3, 54, 9720, 26244000, 1488034800000, 2362404048480000000, 135019896025206528000000000, 347259290825980971841536000000000000, 49121618545275670528799969525760000000000000000
Offset: 0
-
[n eq 0 select 1 else (&*[(Binomial(k+1,2))^(n-k+1): k in [1..n]]): n in [0..15]]; // G. C. Greubel, May 30 2024
-
Table[Product[(k*(k+1)/2)^(n - k + 1), {k, 1, n}], {n, 0, 12}] (* Vaclav Kotesovec, Nov 13 2022 *)
-
a(n) = prod(k=1, n, binomial(k+1,2)^(n-k+1)); \\ Michel Marcus, Nov 13 2022
-
[product((binomial(k+1,2))^(n-k+1) for k in range(1,n+1)) for n in range(16)] # G. C. Greubel, May 30 2024
Comments