cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 81 results. Next

A056582 Highest common factor (or GCD) of n^n and hyperfactorial(n-1), i.e., gcd(n^n, product(k^k) for k < n).

Original entry on oeis.org

1, 1, 4, 1, 1728, 1, 65536, 19683, 3200000, 1, 8916100448256, 1, 13492928512, 437893890380859375, 18446744073709551616, 1, 39346408075296537575424, 1, 104857600000000000000000000
Offset: 2

Views

Author

Henry Bottomley, Jul 03 2000

Keywords

Comments

Sequence could be defined as: a(2) = 1, a(4) = 4, a(8) = 65536, a(9) = 19683; if p an odd prime: a(p) = 1 and a(2p) = (4p)^p; otherwise if n > 1: a(n) = n^n.

Examples

			a(6) = gcd(46656, 86400000) = 1728.
		

Programs

  • Python
    from gmpy2 import gcd
    A056582_list, n = [], 1
    for i in range(2,201):
        m = i**i
        A056582_list.append(int(gcd(n,m)))
        n *= m # Chai Wah Wu, Aug 21 2015

Formula

a(n) = GCD(A000312(n), A002109(n-1)).
Except for n = 4, a(n) = A056583(n)^A056584(n) = A056583(n)^(n^2/A056583(n)) = (n^2/A056584(n))^A056584(n).

A056583 Solution to a(n)^(n^2/a(n)) = gcd(n^n, Product_{k

Original entry on oeis.org

1, 1, 0, 1, 12, 1, 16, 27, 20, 1, 12, 1, 28, 15, 16, 1, 18, 1, 20, 21, 44, 1, 24, 25, 52, 27, 28, 1, 30, 1, 32, 33, 68, 35, 36, 1, 76, 39, 40, 1, 42, 1, 44, 45, 92, 1, 48, 49, 50, 51, 52, 1, 54, 55, 56, 57, 116, 1, 60, 1, 124, 63, 64, 65, 66, 1, 68, 69, 70, 1, 72, 1, 148, 75, 76
Offset: 2

Views

Author

Henry Bottomley, Jul 03 2000

Keywords

Examples

			For n = 4, there are no integer solutions of a^(16/a) = 4, though there are two real solutions of about 1.099997 and 43.55926.
		

Crossrefs

Programs

  • PARI
    A056583(n) = if(2==n, 1, if(4==n, 0, if(8==n, 16, if(9==n, 27, if(isprime(n), 1, if(!(n%2) && isprime(n/2), 2*n, n)))))); \\ Antti Karttunen, Jan 22 2025

Formula

a(2) = 1, a(4) = 0, a(8) = 16, a(9) = 27; if p an odd prime: a(p) = 1 and a(2p) = 4p; otherwise if n>1: a(n) = n. Apart from n = 4, a(n) = n^2/A056584(n) = A056582(n)^(1/A056584(n)).

A219268 Logarithmic derivative of A001142, where A001142(n) = product{k=1..n} k^k/k!.

Original entry on oeis.org

1, 3, 22, 347, 11986, 956334, 184142134, 87903876147, 105736320973732, 323943204887363938, 2547547949361933790328, 51735228018482706470521574, 2726127372514537039881847535054, 374214400937086673452020875815709240, 134262616041282033840675468757467513112522
Offset: 1

Views

Author

Paul D. Hanna, Nov 16 2012

Keywords

Comments

A001142(n) = hyperfactorial(n)/superfactorial(n) = A002109(n)/A000178(n).

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 22*x^3/3 + 347*x^4/4 + 11986*x^5/5 + 956334*x^6/6 +...
where
exp(L(x)) = 1 + x + 2*x^2 + 9*x^3 + 96*x^4 + 2500*x^5 + 162000*x^6 + 26471025*x^7 + 11014635520*x^8 +...+ A001142(n)*x^n +...
		

Crossrefs

Programs

  • Mathematica
    nmax=15; Rest[CoefficientList[Series[Log[Sum[Product[j^j/j!,{j,1,k}]*x^k,{k,0,nmax}]],{x,0,nmax}],x] * Range[0,nmax]] (* Vaclav Kotesovec, Jul 10 2015 *)
  • PARI
    {a(n)=n*polcoeff(log(sum(k=0,n+1,prod(j=0,k,j^j/j!)*x^k)+x*O(x^n)),n)}
    for(n=1,21,print1(a(n),", "))

Formula

a(n) ~ A^2 * exp(n^2/2 + n - 1/12) / (n^(n/2 - 2/3) * (2*Pi)^((n+1)/2)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Jul 10 2015

A260146 Number of positive divisors of hyperfactorial(n).

Original entry on oeis.org

1, 1, 3, 12, 44, 264, 1020, 8160, 19680, 55104, 182784, 2193408, 4608000, 64512000, 210524160, 560849520, 964157040, 17354826720, 32092508448, 641850168960, 1302952210560, 3134374548480, 9806680558080, 235360333393920, 374108929689600, 740882390169600
Offset: 0

Views

Author

Matthew Campbell, Jul 17 2015

Keywords

Examples

			a(2) = sigma(0, hyperfactorial(2)) = sigma(0, 2^2*1^1) = sigma(0, 4). The divisors of 4 are 1, 2, and 4. The number of divisors is a(2) = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[0, Hyperfactorial[n]], {n, 0, 200}]
  • PARI
    hf(n,p)=my(s); forstep(k=p,n,p, s+=k); if(nhf(n,p)+1, primes([2,n]))) \\ Charles R Greathouse IV, Jul 17 2015

Formula

a(n) = A000005(A002109(n)).

A260297 a(n) = prime(n) - (hyperfactorial(prime(n)-1) mod prime(n)).

Original entry on oeis.org

1, 2, 2, 6, 1, 5, 4, 1, 1, 12, 1, 31, 32, 1, 46, 23, 58, 11, 1, 1, 46, 78, 82, 55, 75, 91, 102, 106, 33, 98, 126, 1, 100, 138, 44, 1, 129, 1, 1, 80, 1, 162, 190, 112, 183, 198, 210, 1, 1, 122, 89, 1, 177, 250, 241, 262, 187, 1, 217, 228, 282, 138, 306, 1, 25
Offset: 1

Views

Author

Matthew Campbell, Jul 22 2015

Keywords

Examples

			a(1) = prime(1) - (hyperfactorial(prime(1)-1)) mod prime(1) = 2 - hyperfactorial(2-1) mod (2) = 2 - 1 mod 2 = 2 - 1 = 1.
		

Crossrefs

Cf. A000040, A002109, A260178 (hyperfactorial(prime(n)-1) mod (prime(n))).

Programs

  • Mathematica
    Table[Prime[n] - Mod[Hyperfactorial[Prime[n] - 1], Prime[n]], {n, 1, 70}]
  • PARI
    a(n,p=prime(n))=lift(-prod(k=1,p-1,Mod(k,p)^k)) \\ Charles R Greathouse IV, Jul 23 2015

Formula

a(n) = prime(n) - A260178(n).

A260298 Primes p such that hyperfactorial(p-1) == 1 (mod p).

Original entry on oeis.org

2, 3, 7, 47, 59, 79, 83, 103, 107, 127, 139, 191, 199, 211, 251, 263, 283, 307, 331, 367, 379, 383, 431, 467, 479, 499, 503, 547, 587, 599, 607, 631, 643, 659, 727, 743, 811, 823, 827, 839, 859, 863, 883, 887, 907, 971, 991, 1087, 1151, 1163, 1171, 1259, 1283
Offset: 1

Views

Author

Matthew Campbell, Jul 22 2015

Keywords

Comments

Does this contain 2 and the entries of A129518? - R. J. Mathar, Aug 07 2015
Primes p such that (p-1)!! == -1 (mod p). - Thomas Ordowski, Jul 26 2016

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Mod[Hyperfactorial[n - 1], n] == 1; Select[ Prime@ Range@ 210, fQ] (* Robert G. Wilson v, Aug 06 2015 *)
  • PARI
    is(p)=prod(k=2, p-1, Mod(k, p)^k)==1 && isprime(p) \\ Charles R Greathouse IV, Aug 05 2015

Formula

a(n) = prime(A260299(n)).

A278860 First series of Hankel determinants based on hyperfactorial.

Original entry on oeis.org

1, 1, 92, 7207016256, 22448940392028699561050505216, 462177945344267713413229252637478222244311831261385379020800000
Offset: 0

Views

Author

Karol A. Penson, Nov 29 2016

Keywords

Comments

It would be interesting to know the formula for this sequence.

Crossrefs

Programs

  • Maple
    a:= n-> LinearAlgebra[Determinant](Matrix(n, (i, j)->
            (t-> mul(k^k, k=0..t))(i+j-1))):
    seq(a(n), n=0..6);  # Alois P. Heinz, Nov 29 2016
  • Mathematica
    Table[Det[Table[Hyperfactorial[i + j - 1], {i, n}, {j, n}]], {n, 7}]

A299035 a(n) = [x^n] Product_{k=1..n} 1/(1-k^k*x).

Original entry on oeis.org

1, 1, 21, 23980, 4896624249, 327969374429859111, 11123496833223144303532943536, 273486179312859032380857823231575174373792, 6620886635410516590847876477644821623913997428738363459941
Offset: 0

Views

Author

Seiichi Manyama, Feb 01 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Product[1/(1 - k^k*x), {k, 1, n}], {x, 0, n}], {n, 0, 10}] (* Vaclav Kotesovec, Feb 02 2018 *)

Formula

a(n) ~ n^(n^2). - Vaclav Kotesovec, Feb 02 2018

A307084 Expansion of 1/(1 - 1^1*x/(1 - 2^2*x/(1 - 3^3*x/(1 - 4^4*x/(1 - 5^5*x/(1 - ...)))))), a continued fraction.

Original entry on oeis.org

1, 1, 5, 133, 31769, 95375641, 4353388262525, 3536446917781244413, 58773633134246903294470769, 22612364832863674279489837434733681, 224919094724957152626614652086970769074005045, 63900685361274641827300282511815586348785532532913331893
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 23 2019

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 11; CoefficientList[Series[1/(1 + ContinuedFractionK[-k^k x, 1, {k, 1, nmax}]), {x, 0, nmax}], x]
  • PARI
    a(n) = my(A=1+O(x)); for(i=1, n, A=1-(n-i+1)^(n-i+1)*x/A); polcoef(1/A, n); \\ Seiichi Manyama, Apr 15 2021

Formula

a(n) ~ A002109(n). - Vaclav Kotesovec, Apr 15 2021

A330716 n-th Gosper hyperfactorial of n.

Original entry on oeis.org

1, 1, 16, 1952152956156672
Offset: 0

Views

Author

Greg Huber, Dec 27 2019

Keywords

Comments

Gosper's m-th hyperfactorial of n is the product 1^(1^m)*2^(2^m)*3^(3^m)*...*n^(n^m).
The 0th hyperfactorial is the factorial function.

Examples

			n=3: a(3) = 1^(1^3)*2^(2^3)*3^(3^3) = 2^8 * 3^27.
a(4) has 198 decimal digits and a(5) has 2927 digits.
		

References

  • R. W. Gosper, "Fac Fun" (ca. 1979).

Crossrefs

Cf. A000142, A002109, A051675, A255321, A255323, A255344 (0th through 5th Gosper hyperfactorials, respectively).

Programs

  • Mathematica
    nmax:=3; Table[Product[i^(i^n),{i,1,n}],{n,0,nmax}] (* Stefano Spezia, Dec 29 2019 *)
Previous Showing 41-50 of 81 results. Next