cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 72 results. Next

A263250 Even bisection of A263087; number of solutions to x - d(x) = 4(n^2), where d(x) is the number of divisors of x (A000005).

Original entry on oeis.org

2, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 3, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 0, 1, 0, 2, 0, 0, 1, 0, 0, 1, 1, 2, 1, 1, 0, 2, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2015

Keywords

Crossrefs

Cf. also A263252 (partial sums).

Programs

  • PARI
    A060990(n) = { my(k = n + 2400, s=0); while(k > n, if(((k-numdiv(k)) == n),s++); k--;); s}; \\ Hard limit A002183(77)=2400 good for at least up to A002182(77) = 10475665200.
    A263087(n) = A060990(n^2);
    A263250(n) = A263087(2*n);
    p = 0; for(n=0, 10000, k = A263250(n); p += k; write("b263250.txt", n, " ", k); write("b263252.txt", n, " ", p)); \\ Compute A263250 and A263252 at the same time.
    
  • Scheme
    (define (A263250 n) (A263087 (+ n n)))

Formula

a(n) = A263087(2*n).

A063072 Sum of divisors of Ramanujan's highly composite numbers, or sigma(A002182(n)).

Original entry on oeis.org

1, 3, 7, 12, 28, 60, 91, 124, 168, 360, 546, 744, 1170, 2418, 2880, 4368, 5952, 9360, 19344, 28800, 39312, 59520, 79248, 99944, 112320, 180048, 203112, 232128, 345600, 471744, 714240, 950976, 1199328, 1451520, 2160576, 2437344, 2926080
Offset: 1

Views

Author

Jason Earls, Aug 02 2001

Keywords

Crossrefs

Programs

  • Mathematica
    s={}; dm=0; Do[d = DivisorSigma[0,n]; If[d > dm, dm=d; AppendTo[s, DivisorSigma[1,n]]], {n, 1, 10^5}]; s (* Amiram Eldar, Jun 28 2019 *)
  • PARI
    a=0; j=[]; for(n=1,200000,b=numdiv(n); if(b>a,a=b; j=concat(j, sigma(n)))); j
    
  • PARI
    { n=a=0; for (m=1, 10^9, b=numdiv(m); if(b>a, a=b; write("b063072.txt", n++, " ", sigma(m)); if (n==50, break)) ) } \\ Harry J. Smith, Aug 16 2009

Formula

a(n) = A000203(A002182(n)). - Michel Marcus, Jun 28 2018

Extensions

More terms from Reiner Martin, Dec 22 2001

A189394 Highly composite numbers whose number of divisors is also highly composite.

Original entry on oeis.org

1, 2, 6, 12, 60, 360, 1260, 2520, 5040, 55440, 277200, 720720, 3603600, 61261200, 2205403200, 293318625600, 6746328388800, 195643523275200
Offset: 1

Views

Author

Krzysztof Ostrowski, Apr 21 2011

Keywords

Comments

Both n and d(n) are highly composite numbers.
It is extremely likely that this sequence is complete. The highly composite numbers have a very special form. The number of divisors of a large HCN has a high power of 2 in its factorization -- which is not the form of an HCN. - T. D. Noe, Apr 21 2011
All but a(7) and a(12) are a multiple of the previous term: ratios a(n+1) / a(n) are (2, 3, 2, 5, 6, 7/2, 2, 2, 11, 5, 13/5, 5, 17, 36, 133, 23, 29, ...?). - M. F. Hasler, Jun 20 2022

Examples

			d(60) = 12; both 60 and 12 are highly composite numbers
		

Crossrefs

Programs

Extensions

Typo in a(15) corrected by Ben Beer, Jul 20 2016
Keywords fini and full, following Øverlier's thesis, added by Michel Marcus, May 25 2023

A226900 Record values of Hooley's Delta function A226898.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 27, 28, 29, 31, 32, 33, 34, 39, 44, 48, 51, 55, 60, 62, 66, 69, 77, 80, 83, 88, 91, 92, 98, 100, 106, 107, 111, 118, 121, 122, 124, 137, 138, 142, 150, 156
Offset: 1

Views

Author

Keywords

References

  • C. Hooley, On a new technique and its applications to the theory of numbers, Proc. London Math. Soc. 3 38:1 (1979), pp. 115-151.

Crossrefs

Programs

  • PARI
    Delta(n)=my(d=divisors(n), m=1); for(i=1, #d-1, my(t=exp(1)*d[i]); m=max(sum(j=i, #d, d[j]r,r=t;print1(t", ")))

Extensions

a(38)-a(54) from Charles R Greathouse IV, Jun 24 2013
a(55)-a(56) from Charles R Greathouse IV, Jul 01 2013

A263092 Numbers whose squares are in A236562; numbers n such that there is at least one such k for which k - d(k) = n^2, where d(k) is the number of divisors of k (A000005).

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 11, 12, 13, 15, 17, 19, 21, 23, 24, 25, 29, 30, 31, 32, 33, 36, 38, 39, 40, 41, 42, 43, 44, 45, 48, 49, 51, 52, 53, 55, 57, 61, 63, 64, 65, 66, 68, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 83, 84, 86, 87, 88, 91, 92, 93, 96, 97, 99, 101, 102, 105, 107, 108, 109
Offset: 0

Views

Author

Antti Karttunen, Oct 11 2015

Keywords

Comments

Starting offset is zero, because a(0)=0 is a special case in this sequence.
Numbers n for which A060990(n^2) = A263087(n) > 0.
Numbers n for which A049820(x) = n^2 has a solution.

Crossrefs

Complement: A263093.
Cf. A263094 (the squares of these numbers).
Cf. A262515 (a subsequence).

Programs

  • PARI
    \\ Compute A263092 and A263094 at the same time:
    A060990(n) = { my(k = n + 1440, s=0); while(k > n, if(((k-numdiv(k)) == n),s++); k--;); s}; \\ Hard limit 1440 good for at least up to A002182(67) = 1102701600 as A002183(67) = 1440.
    n = 0; k = 0; while((n^2)<1102701600, if((A060990(n*n) > 0), write("b263092.txt", k, " ", n); write("b263094.txt", k, " ", (n*n)); k++; ); n++; if(!(n%8192),print1(n,",k=", k, ", ")); );
    
  • Scheme
    ;; With Antti Karttunen's IntSeq-library.
    (define A263092 (MATCHING-POS 0 0 (lambda (n) (not (zero? (A060990 (* n n)))))))
    (define A263092 (NONZERO-POS 0 0 A263087))

A263251 Odd bisection of A263087; number of solutions to x - d(x) = (2n+1)^2, where d(x) is the number of divisors of x (A000005).

Original entry on oeis.org

2, 1, 0, 0, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 0, 1, 1, 1, 1, 1, 0, 1, 0, 2, 1, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 0, 0, 1, 2, 2, 0, 2, 1, 0, 1, 1, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 3, 2, 1, 0, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 2, 0, 0, 0, 0, 1, 2, 2, 2, 2, 0, 0, 1, 0, 1, 1, 1
Offset: 0

Views

Author

Antti Karttunen, Nov 07 2015

Keywords

Crossrefs

Cf. also A263253 (partial sums).

Programs

  • PARI
    A060990(n) = { my(k = n + 2400, s=0); while(k > n, if(((k-numdiv(k)) == n),s++); k--;); s}; \\ Hard limit A002183(77)=2400 good for at least up to A002182(77) = 10475665200.
    A263087(n) = A060990(n^2);
    A263251(n) = A263087((2*n)+1);
    p = 0; for(n=0, 10000, k = A263251(n); p += k; write("b263251.txt", n, " ", k); write("b263253.txt", n, " ", p)); \\ Compute A263251 and A263253 at the same time.
    
  • Scheme
    (define (A263251 n) (A263087 (+ n n 1)))

Formula

a(n) = A263087(2*n + 1).

A188591 Records of A188550.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 32, 36, 40, 48, 60, 64, 72, 80, 84, 90, 96, 100, 108, 120, 128, 144, 160, 168, 180, 192, 200, 216
Offset: 1

Views

Author

Vladimir Shevelev, Apr 04 2011

Keywords

Comments

Is this the same sequence as A002183, number of divisors of n-th highly composite number?

Crossrefs

Programs

  • Mathematica
    max = 10^6; (* b = A188550 *) b[n_] := Max @ Table[Length @ Select[ Table[ n-d, {d, Divisors[n-k] // Rest}], Mod[#, k] == 0&], {k, 2, Floor[ Sqrt[n] ]}]; A188591 = Reap[For[record = 0; k = 1; n = 1, n <= max, n++, bn = b[n]; If[bn > record, record = bn; Print["a(", k++, ") = b(", n, ") = ", bn]; Sow[bn]]]][[2, 1]] (* Jean-François Alcover, Feb 07 2016 *)

Extensions

More terms from Jean-François Alcover, Feb 07 2016

A194095 Record values in A056595.

Original entry on oeis.org

0, 1, 3, 4, 6, 7, 10, 14, 15, 17, 20, 22, 24, 30, 32, 37, 44, 45, 46, 54, 60, 62, 66, 68, 74, 77, 78, 92, 93, 96, 114, 124, 138, 154, 160, 168, 186, 188, 189, 191, 204, 216, 234, 252, 282, 314, 328, 348, 378, 380, 391, 420, 440, 468, 474, 488, 504, 508, 564
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 15 2011

Keywords

Comments

a(n) = A056595(A194096(n)) and A056595(m) < a(n) for m < A194096(n).

Crossrefs

Cf. A002183.

Programs

A210523 Record values of Dedekind psi function.

Original entry on oeis.org

1, 3, 4, 6, 12, 18, 24, 36, 48, 72, 96, 108, 144, 168, 192, 216, 240, 288, 360, 384, 432, 576, 648, 672, 720, 864, 1008, 1152, 1296, 1344, 1440, 1728, 1800, 2016, 2304, 2592, 2880, 3024, 3456, 4032, 4320, 4608, 5184
Offset: 1

Views

Author

Enrique Pérez Herrero, Jan 27 2013

Keywords

Comments

Record values of A001615.

Crossrefs

Cf. A002183, A006093, A330006 (the corresponding positions of records).

Programs

  • Maple
    N:= 100: # to get a(1) to a(N)
    A001615 := proc(n) n*mul((1+1/i[1]), i=ifactors(n)[2]) end:
    count:= 0:
    val:= -infinity:
    for i from 1 while count < N do
      v:= A001615(i);
      if v > val then
         val:= v;
           count:= count+1;
           A[count]:=v;
      fi
    od:
    seq(A[i],i=1..N); # Robert Israel, Nov 19 2014
  • Mathematica
    JordanTotient[n_,k_:1] := DivisorSum[n, #^k*MoebiusMu[n/#]&] /; (n>0) && IntegerQ[n]; DedekindPsi[n_] := JordanTotient[n,2]/EulerPhi[n]; a=1; lst={a}; Do[b=DedekindPsi[n]; If[b>a, a=b; AppendTo[lst,b]], {n,2000}]; lst
    psi[1] = 1; psi[n_] := n * Times @@ (1 + 1/FactorInteger[n][[;; , 1]]); seq = {}; pmax = 0; Do[pmax = psi[n]; If[p > pmax, pmax = p; AppendTo[seq, p]], {n, 1, 10^5}]; seq (* Amiram Eldar, Nov 26 2019 *)

Formula

a(n) = A001615(A330006(n)). - Amiram Eldar, Nov 26 2019

A244053 Let m = A244052(n) = n-th highly regular number; a(n) = number of numbers r <= m, all of whose prime divisors p also divide m.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 10, 11, 18, 19, 26, 28, 32, 36, 41, 44, 68, 77, 80, 96, 115, 131, 145, 156, 166, 174, 183, 192, 283, 295, 313, 322, 382, 395, 452, 463, 505, 519, 551, 567, 593, 629, 660, 691, 717, 743, 766, 1161, 1224, 1253, 1257, 1285, 1306, 1526
Offset: 1

Views

Author

Michael De Vlieger, Jun 18 2014

Keywords

Comments

Analogous to A002183.
Records transform of A010846. -Michael De Vlieger, Mar 08 2017

Examples

			a(5) = 6 since 6 is the fifth record value of A010846. The first record value is 1 set at position 1; the second is 2 set at position 2, the third is 3 set at position 4, the fourth is 5 set at position 6. Sequence A244052 records the positions of these record values.
		

Crossrefs

Programs

  • Mathematica
    a010846[n_] := Block[{pf, a}, a[x_] := First /@ FactorInteger@ x; pf = a@ n; If[n == 1, 1, 1 + Count[Range@ n, ?(SubsetQ[pf, a@ #] &)]]]; f[n] := Block[{t = {}, max = 0, x}, Do[If[(x = a010846@ i) > max, max = x; AppendTo[t, a010846[i]]], {i, n}]; t]; f@ 1000 (* Michael De Vlieger, Feb 10 2015 *)
    Union@ Rest@ FoldList[Max, 0, Array[Count[Range@ #, k_ /; PowerMod[#, Floor@ Log2@ #, k] == 0] &, 10^3]] (* simplest, or *)
    f[n_] := If[n == 1, 1, Length@ Function[w, ToExpression@ StringJoin["Module[{n = ", ToString@ n, ", k = 0}, Flatten@ Table[k++, ", Most@ Flatten@ Map[{#, ", "} &, #], "]]"] &@ MapIndexed[Function[p, StringJoin["{", ToString@ Last@ p, ", 0, Log[", ToString@ First@ p, ", n/(", ToString@ InputForm[Times @@ Map[Power @@ # &, Take[w, First@ #2 - 1]]], ")]}"]]@ w[[First@ #2]] &, w]]@ Map[{#, ToExpression["p" <> ToString@ PrimePi@ #]} &, FactorInteger[n][[All, 1]]]]; Union@ Rest@ FoldList[Max, 0, Array[f, 10^4]] (* Michael De Vlieger, Mar 08 2017, more efficient *)
Previous Showing 41-50 of 72 results. Next