cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 148 results. Next

A371486 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1-x))^4.

Original entry on oeis.org

1, 4, 30, 260, 2465, 24796, 260008, 2811216, 31117240, 350890260, 4016744586, 46556054072, 545273713228, 6443442857024, 76727957438650, 919796418086076, 11091249210406816, 134439965189940176, 1637160457090585016, 20019920157735604796, 245733987135102838131
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n-1, n-k)*binomial(5*k+3, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(5*k+3,k)/(k+1).
G.f.: A(x) = B(x/(1-x)), where B(x) = (1/x) * Series_Reversion( x*(1-x)^4 ).
G.f.: A(x) = B(x)^4 where B(x) is the g.f. of A349332.

A384747 Triangle read by rows: T(n,k) is the number of rooted ordered trees with node weights summing to n, where the root has weight 0, non-root node weights are in {1,..,k}, and no nodes have the same weight as their parent node.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 5, 6, 0, 1, 11, 15, 16, 0, 1, 26, 39, 43, 44, 0, 1, 63, 110, 123, 127, 128, 0, 1, 153, 308, 358, 371, 375, 376, 0, 1, 376, 869, 1046, 1096, 1109, 1113, 1114, 0, 1, 931, 2499, 3098, 3278, 3328, 3341, 3345, 3346, 0, 1, 2317, 7238, 9283, 9904, 10084, 10134, 10147, 10151, 10152
Offset: 0

Views

Author

John Tyler Rascoe, Jun 09 2025

Keywords

Examples

			Triangle begins:
    k=0  1    2     3     4     5     6     7     8     9
 n=0 [1]
 n=1 [0, 1]
 n=2 [0, 1,   2]
 n=3 [0, 1,   5,    6]
 n=4 [0, 1,  11,   15,   16]
 n=5 [0, 1,  26,   39,   43,   44]
 n=6 [0, 1,  63,  110,  123,  127,  128]
 n=7 [0, 1, 153,  308,  358,  371,  375,  376]
 n=8 [0, 1, 376,  869, 1046, 1096, 1109, 1113, 1114]
 n=9 [0, 1, 931, 2499, 3098, 3278, 3328, 3341, 3345, 3346]
...
T(3,3) = 6 counts:
  o    o    o      o        o        __o__
  |    |    |     / \      / \      /  |  \
 (3)  (2)  (1)  (1) (2)  (2) (1)  (1) (1) (1)
       |    |
      (1)  (2)
		

Crossrefs

Cf. A051286 (column k=2), A382096 (column k=3), A384748 (main diagonal).

Programs

  • PARI
    b(i,j,k,N) = {if(k>N,1, 1/( 1  - sum(u=1,j, if(u==i,0,x^u * b(u,j,k+1,N-u+1)))))}
    Gx(k,N) = {my(x='x+O('x^(N+1))); Vec(1/(1 - sum(i=1,k, b(i,k,1,N)*x^i)))}
    T(max_row) = { my( N = max_row+1, v = vector(N, i, if(i==1, 1, 0))~); for(k=1, N, v=matconcat([v, Gx(k,N)~])); vector(N, n, vector(n, k, v[n, k]))}
    T(9)

Formula

T(n,k) = T(n,n) for k > n.

A045445 Number of nonisomorphic systems of catafusenes for the unsymmetrical schemes (group C_s) with two appendages (see references for precise definition).

Original entry on oeis.org

0, 1, 6, 29, 132, 590, 2628, 11732, 52608, 237129, 1074510, 4893801, 22395420, 102943815, 475139070, 2201301575, 10234016880, 47731093715, 223273611810, 1047265325255, 4924606035900, 23211459517120, 109642275853176, 518959629394294, 2460993383491632, 11691102386417575
Offset: 1

Views

Author

Keywords

Comments

Number of 3-Motzkin paths of length n (i.e., lattice paths from (0,0) to (n,0) that do not go below the line y = 0 and consist of steps U = (1,1), D = (1,-1) and three types of steps H = (1,0)) that start with a U step. Example: a(4) = 29 because we have UDUD, UUDD, 9 UDHH paths, 9 UHDH paths and 9 UHHD paths. - Emeric Deutsch, Mar 26 2004
Here, n is the total number of hexagons in the system, which is usually denoted by h in most of the references below. In Cyvin, Brunvoll, and Cyvin (1992), Table 1, p. 28, it seems that the rooted hexagon is "distinguished", and the sequence is shifted by 1. - Petros Hadjicostas, May 26 2019

Crossrefs

Cf. A002212, A045829 (auto-convolution), A002057.

Programs

  • Maple
    a := n -> binomial(2*n+2,n+1)/(n+2) + add(binomial(2*k,k)*binomial(n-1,k-1)*(3*k-2*n-3)/(n-k+1)/(k+1),k=1..n): 0,seq(a(n),n=2..23);
    # Alternative:
    a := n -> (2*(n - 1)/(n + 2))*(binomial(2*n, n) / (n + 1))*hypergeom([-n-2, -n+2], [-n + 1/2], -1/4): seq(simplify(a(n)), n = 1..26); # Peter Luschny, Oct 23 2022
  • Mathematica
    a[n_] = Binomial[2n+2, n+1]/(n+2) + Sum[Binomial[2k, k]*Binomial[n-1, k-1]*(3k-2n-3)/(n-k+1)/(k+1), {k, 1, n}];
    a /@ Range[23] (* Jean-François Alcover, Jul 13 2011, after Maple *)
    Table[SeriesCoefficient[(1/2)*(7*x^2-6*x+1+(3*x-1)*Sqrt[5*x^2-6*x+1])/x^2,{x,0,n}],{n,1,23}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • PARI
    x='x+O('x^66); concat([0],Vec((1/2)*(7*x^2-6*x+1+(3*x-1)*sqrt(5*x^2-6*x+1))/x^2)) \\ Joerg Arndt, May 04 2013

Formula

G.f.: (1/2)*(7*x^2 - 6*x + 1 + (3*x-1)*sqrt(5*x^2-6*x+1))/x^2. - Vladeta Jovovic, Jul 19 2001
a(n) = A002212(n+1) - 3*A002212(n). Convolution of A002212 without the first term with itself. - Emeric Deutsch, Jul 24 2002
a(n) = binomial(2n+2, n+1)/(n+2) + Sum_{k=1..n} binomial(2k, k)*binomial(n-1, k-1)*(3k-2n-3)/((n-k+1)*(k+1)) (n >= 2). - Emeric Deutsch, Mar 26 2004
Recurrence: (n-2)*(n+2)*a(n) = 3*(n-1)*(2*n-1)*a(n-1) - 5*(n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ 5^(n+1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
a(n) = (2/(n+1))*Sum_{m=0..n-1} C(n+1,m)*C(2*n-2*m+2,n-m-1). - Vladimir Kruchinin Oct 18 2022
Let h(n) = hypergeom([-n-2, -n+2], [-n+1/2], -1/4) then a(n) = A002057(n-2)*h(n) = (2*(n-1)/(n+2))*CatalanNumber(n)*h(n). - Peter Luschny, Oct 23 2022

Extensions

More terms from Vladeta Jovovic, Jul 19 2001

A371483 G.f. A(x) satisfies A(x) = 1 / (1 - x*A(x) / (1-x))^3.

Original entry on oeis.org

1, 3, 18, 124, 933, 7446, 61943, 531348, 4666425, 41751325, 379230711, 3487769871, 32414437521, 303950138604, 2872137458010, 27322233357964, 261446381792670, 2514851398148595, 24303030755342128, 235841264063844258, 2297278004837062317
Offset: 0

Views

Author

Seiichi Manyama, Mar 25 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n-1, n-k)*binomial(4*k+2, k)/(k+1));

Formula

a(n) = Sum_{k=0..n} binomial(n-1,n-k) * binomial(4*k+2,k)/(k+1).
G.f.: A(x) = B(x/(1-x)), where B(x) = (1/x) * Series_Reversion( x*(1-x)^3 ).
G.f.: A(x) = B(x)^3 where B(x) is the g.f. of A349331.

A385563 Expansion of 1/((1-x) * (1-5*x))^(3/2).

Original entry on oeis.org

1, 9, 60, 360, 2055, 11403, 62132, 334260, 1781415, 9425295, 49581576, 259601004, 1353939405, 7038232425, 36484340400, 188665670880, 973545780195, 5014258620075, 25783103206100, 132378800689800, 678768332410245, 3476164133573505, 17782899991147500
Offset: 0

Views

Author

Seiichi Manyama, Aug 19 2025

Keywords

Crossrefs

Partial sums of A383254.

Programs

  • Mathematica
    Module[{a, n}, RecurrenceTable[{a[n] == ((6*n+3)*a[n-1] - 5*(n+1)*a[n-2])/n, a[0] == 1, a[1] == 9}, a, {n, 0, 25}]] (* Paolo Xausa, Aug 21 2025 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/((1-x)*(1-5*x))^(3/2))

Formula

n*a(n) = (6*n+3)*a(n-1) - 5*(n+1)*a(n-2) for n > 1.
a(n) = (1/4)^n * Sum_{k=0..n} 5^k * (2*k+1) * (2*(n-k)+1) * binomial(2*k,k) * binomial(2*(n-k),n-k).
a(n) = Sum_{k=0..n} (2*k+1) * binomial(2*k,k) * binomial(n+2,n-k).
a(n) = Sum_{k=0..n} (-1)^k * 5^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(n+2,n-k).
a(n) = binomial(n+2,2) * A002212(n+1).
a(n) = ((n+2)/2) * Sum_{k=0..floor(n/2)} 3^(n-2*k) * binomial(n+1,n-2*k) * binomial(2*k+1,k).
a(n) = Sum_{k=0..n} (3/2)^k * (-5/6)^(n-k) * (2*k+1) * binomial(2*k,k) * binomial(k,n-k).
a(n) ~ sqrt(n) * 5^(n + 3/2) / (4*sqrt(Pi)). - Vaclav Kotesovec, Aug 21 2025

A002215 Number of polyhexes with n hexagons, having reflectional symmetry (see Harary and Read for precise definition).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 36, 72, 137, 274, 543, 1086, 2219, 4438, 9285, 18570, 39587, 79174, 171369, 342738, 751236, 1502472, 3328218, 6656436, 14878455, 29756910, 67030785, 134061570, 304036170, 608072340, 1387247580, 2774495160
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002212.

Formula

From Emeric Deutsch, Mar 14 2004: (Start)
G.f.: z + (1+2*z)*U(z^2) where U(z) = (1 - 3*z - sqrt(1-6*z+5*z^2))/(2*z) (eq. (16) in the Harary-Read paper).
a(2n) = A002212(n), n >= 1; a(2n+1) = 2*A002212(n), n >= 1. (End)

Extensions

More terms from Emeric Deutsch, Mar 14 2004

A108198 Triangle read by rows: T(n,k) = binomial(2k+2,k+1)*binomial(n,k)/(k+2) (0 <= k <= n).

Original entry on oeis.org

1, 1, 2, 1, 4, 5, 1, 6, 15, 14, 1, 8, 30, 56, 42, 1, 10, 50, 140, 210, 132, 1, 12, 75, 280, 630, 792, 429, 1, 14, 105, 490, 1470, 2772, 3003, 1430, 1, 16, 140, 784, 2940, 7392, 12012, 11440, 4862, 1, 18, 180, 1176, 5292, 16632, 36036, 51480, 43758, 16796, 1, 20, 225
Offset: 0

Views

Author

Emeric Deutsch, Jun 15 2005, Mar 30 2007

Keywords

Comments

Also, with offset 1, triangle read by rows: T(n,k) is the number of skew Dyck paths of semilength n and ending at the point (2k,0) (1 <= k <= n). A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of a path is defined to be the number of its steps. For example, T(3,2)=4 because we have UDUUDL, UUUDLD, UUDUDL and UUUDDL.
This sequence gives the coefficients of the Jensen polynomials (increasing powers of x) of degree n and shift 1 for the Catalan sequence A000108. See A098474 for a similar comment. - Wolfdieter Lang, Jun 25 2019

Examples

			Triangle begins:
1;
1,  2;
1,  4,  5;
1,  6, 15,  14;
1,  8, 30,  56,  42;
1, 10, 50, 140, 210, 132;
1, 12, 75, 280, 630, 792, 429;
		

Crossrefs

Mirror image of A126181.

Programs

  • Maple
    T:=(n,k)->binomial(2*k+2,k+1)*binomial(n,k)/(k+2): for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
    h := n -> simplify(hypergeom([3/2, -n], [3], -x)):
    seq(print(seq(4^k*coeff(h(n), x, k), k=0..n)), n=0..9); # Peter Luschny, Feb 03 2015
  • Mathematica
    Flatten[Table[Binomial[2k+2,k+1] Binomial[n,k]/(k+2),{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 20 2013 *)
  • Sage
    def A108198(n,k):
        return (-1)^k*catalan_number(k+1)*rising_factorial(-n,k)/factorial(k)
    for n in range(7): [A108198(n,k) for k in (0..n)] # Peter Luschny, Feb 05 2015

Formula

Sum of row n = A002212(n+1).
T(n,n) = Catalan(n+1) (A000108).
Sum_{k=1..n} k*T(n,k) = A026388(n).
With offset 1, T(n,k) = c(k)*binomial(n-1,k-1), where c(j) = binomial(2j,j)/(j+1) is a Catalan number (A000108).
G.f.: G-1, where G=G(t,z) satisfies G = 1 + t*z*G^2 + z*(G-1).
T(n, k) = 4^k*[x^k]hypergeometric([3/2, -n], [3], -x). - Peter Luschny, Feb 03 2015, based on an observation of Peter Bala in A254632.
T(n, k) = (-1)^k*Catalan(k+1)*Pochhammer(-n,k)/k!. - Peter Luschny, Feb 05 2015

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew Plewe, Jun 16 2007

A247495 Generalized Motzkin numbers: Square array read by descending antidiagonals, T(n, k) = k!*[x^k](exp(n*x)* BesselI_{1}(2*x)/x), n>=0, k>=0.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 0, 2, 2, 1, 2, 4, 5, 3, 1, 0, 9, 14, 10, 4, 1, 5, 21, 42, 36, 17, 5, 1, 0, 51, 132, 137, 76, 26, 6, 1, 14, 127, 429, 543, 354, 140, 37, 7, 1, 0, 323, 1430, 2219, 1704, 777, 234, 50, 8, 1, 42, 835, 4862, 9285, 8421, 4425, 1514, 364, 65, 9, 1
Offset: 0

Views

Author

Peter Luschny, Dec 11 2014

Keywords

Comments

This two-dimensional array of numbers can be seen as a generalization of the Motzkin numbers A001006 for two reasons: The case n=1 reduces to the Motzkin numbers and the columns are the values of the Motzkin polynomials M_{k}(x) = sum_{j=0..k} A097610(k,j)*x^j evaluated at the nonnegative integers.

Examples

			Square array starts:
[n\k][0][1] [2]  [3]   [4]   [5]    [6]     [7]      [8]
[0]   1, 0,  1,   0,    2,    0,     5,      0,      14, ...  A126120
[1]   1, 1,  2,   4,    9,   21,    51,    127,     323, ...  A001006
[2]   1, 2,  5,  14,   42,  132,   429,   1430,    4862, ...  A000108
[3]   1, 3, 10,  36,  137,  543,  2219,   9285,   39587, ...  A002212
[4]   1, 4, 17,  76,  354, 1704,  8421,  42508,  218318, ...  A005572
[5]   1, 5, 26, 140,  777, 4425, 25755, 152675,  919139, ...  A182401
[6]   1, 6, 37, 234, 1514, 9996, 67181, 458562, 3172478, ...  A025230
A000012,A001477,A002522,A079908, ...
.
Triangular array starts:
              1,
             0, 1,
           1, 1, 1,
          0, 2, 2, 1,
        2, 4, 5, 3, 1,
      0, 9, 14, 10, 4, 1,
   5, 21, 42, 36, 17, 5, 1,
0, 51, 132, 137, 76, 26, 6, 1.
		

Crossrefs

Programs

  • Maple
    # RECURRENCE
    T := proc(n,k) option remember; if k=0 then 1 elif k=1 then n else
    (n*(2*k+1)*T(n,k-1)-(n-2)*(n+2)*(k-1)*T(n,k-2))/(k+2) fi end:
    seq(print(seq(T(n,k),k=0..9)),n=0..6);
    # OGF (row)
    ogf := n -> (1-n*x-sqrt(((n-2)*x-1)*((n+2)*x-1)))/(2*x^2):
    seq(print(seq(coeff(series(ogf(n),x,12),x,k),k=0..9)),n=0..6);
    # EGF (row)
    egf := n -> exp(n*x)*hypergeom([],[2],x^2):
    seq(print(seq(k!*coeff(series(egf(n),x,k+2),x,k),k=0..9)),n=0..6);
    # MOTZKIN polynomial (column)
    A097610 := proc(n,k) if type(n-k,odd) then 0 else n!/(k!*((n-k)/2)!^2* ((n-k)/2+1)) fi end: M := (k,x) -> add(A097610(k,j)*x^j,j=0..k):
    seq(print(seq(M(k,n),n=0..9)),k=0..6);
    # OGF (column)
    col := proc(n, len) local G; G := A247497_row(n); (-1)^(n+1)* add(G[k+1]/(x-1)^(k+1), k=0..n); seq(coeff(series(%, x, len+1),x,j), j=0..len) end: seq(print(col(n,8)), n=0..6); # Peter Luschny, Dec 14 2014
  • Mathematica
    T[0, k_] := If[EvenQ[k], CatalanNumber[k/2], 0];
    T[n_, k_] := n^k*Hypergeometric2F1[(1 - k)/2, -k/2, 2, 4/n^2];
    Table[T[n - k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 03 2017 *)
  • Sage
    def A247495(n,k):
        if n==0: return(k//2+1)*factorial(k)/factorial(k//2+1)^2 if is_even(k) else 0
        return n^k*hypergeometric([(1-k)/2,-k/2],[2],4/n^2).simplify()
    for n in (0..7): print([A247495(n,k) for k in range(11)])

Formula

T(n,k) = (n*(2*k+1)*T(n,k-1)-(n-2)*(n+2)*(k-1)*T(n,k-2))/(k+2) for k>=2.
T(n,k) = Sum_{j=0..floor(k/2)} n^(k-2*j)*binomial(k,2*j)*binomial(2*j,j)/(j+1).
T(n,k) = n^k*hypergeom([(1-k)/2,-k/2], [2], 4/n^2) for n>0.
T(n,n) = A247496(n).
O.g.f. for row n: (1-n*x-sqrt(((n-2)*x-1)*((n+2)*x-1)))/(2*x^2).
O.g.f. for row n: R(x)/x where R(x) is series reversion of x/(1+n*x+x^2).
E.g.f. for row n: exp(n*x)*hypergeom([],[2],x^2).
O.g.f. for column k: the k-th column consists of the values of the k-th Motzkin polynomial M_{k}(x) evaluated at x = 0,1,2,...; M_{k}(x) = sum_{j=0..k} A097610(k,j)*x^j = sum_{j=0..k} (-1)^j*binomial(k,j)*A001006(j)*(x+1)^(k-j).
O.g.f. for column k: sum_{j=0..k} (-1)^(k+1)*A247497(k,j)/(x-1)^(j+1). - Peter Luschny, Dec 14 2014
O.g.f. for row n: 1/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - n*x - x^2/(1 - ...))))), a continued fraction. - Ilya Gutkovskiy, Sep 21 2017
T(n,k) is the coefficient of x^k in the expansion of 1/(k+1) * (1 + n*x + x^2)^(k+1). - Seiichi Manyama, May 07 2019

A304788 Expansion of e.g.f. exp(Sum_{k>=1} binomial(2*k,k)*x^k/(k + 1)!).

Original entry on oeis.org

1, 1, 3, 12, 59, 343, 2295, 17307, 144751, 1326377, 13189945, 141271298, 1619488645, 19766050827, 255693112641, 3492065507376, 50180426293255, 756444290843433, 11930511611596861, 196404976143077964, 3367697323914503113, 60029614473492823771, 1110430594720934758781
Offset: 0

Views

Author

Ilya Gutkovskiy, May 18 2018

Keywords

Comments

Exponential transform of A000108.

Examples

			E.g.f.: A(x) = 1 + x/1! + 3*x^2/2! + 12*x^3/3! + 59*x^4/4! + 343*x^5/5! + 2295*x^6/6! + 17307*x^7/7! + ...
		

Crossrefs

Programs

  • Maple
    a:=series(exp(add(binomial(2*k,k)*x^k/(k+1)!,k=1..100)),x=0,23): seq(n!*coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 26 2019
  • Mathematica
    nmax = 22; CoefficientList[Series[Exp[Sum[CatalanNumber[k] x^k/k!, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
    nmax = 22; CoefficientList[Series[Exp[Exp[2 x] (BesselI[0, 2 x] - BesselI[1, 2 x]) - 1], {x, 0, nmax}], x] Range[0, nmax]!
    a[n_] := a[n] = Sum[CatalanNumber[k] Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 22}]

Formula

E.g.f.: exp(Sum_{k>=1} A000108(k)*x^k/k!).
E.g.f.: exp(exp(2*x)*(BesselI(0,2*x) - BesselI(1,2*x)) - 1).

A378326 a(n) = Sum_{k=0..n} binomial(n-1,k-1) * binomial(n*k,k) / ((n-1)*k+1).

Original entry on oeis.org

1, 1, 3, 19, 219, 3901, 95838, 3022909, 116798643, 5350403737, 283728025998, 17104314563843, 1155635807408096, 86513627563199279, 7109252862969177287, 636268582522962837475, 61610670571434193189443, 6418044336586421956746033, 715718717341021991299583730
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n-1, k-1]*Binomial[n*k, k]/((n-1)*k+1), {k, 0, n}], {n, 0, 20}]

Formula

a(n) ~ exp(n + exp(-1) - 1/2) * n^(n - 5/2) / sqrt(2*Pi).
Previous Showing 41-50 of 148 results. Next