cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 38 results. Next

A079907 Numbers n such that 11*12^n -1 is prime.

Original entry on oeis.org

1, 2, 21, 25, 33, 54, 78, 235, 1566, 2273, 2310, 4121, 7775, 42249, 105974, 138961
Offset: 1

Views

Author

Robert G. Wilson v, Jan 16 2003

Keywords

Comments

a(17) > 2*10^5. - Robert Price, Mar 20 2015

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section A3.

Crossrefs

Programs

  • Magma
    [n: n in [1..600]| IsPrime(11*12^n - 1)]; // Vincenzo Librandi, Mar 21 2015
  • Mathematica
    Do[ If[ PrimeQ[11*12^n - 1], Print[n]], {n, 1, 2000}]
    Select[Range[10000], PrimeQ[(11 12^# - 1)] &] (* Vincenzo Librandi, Mar 21 2015 *)
  • PARI
    for(n=1,2000, if(isprime(11*12^n-1),print1(n, ", ")))
    

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
a(13)-a(16) from Robert Price, Mar 20 2015

A046866 Numbers k such that 6*7^k - 1 is prime.

Original entry on oeis.org

0, 1, 2, 7, 18, 55, 69, 87, 119, 141, 189, 249, 354, 1586, 2135, 2865, 2930, 4214, 7167, 67485, 74402, 79326, 231349
Offset: 1

Views

Author

Keywords

Comments

a(23) > 2*10^5. - Robert Price, Nov 13 2015

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A3.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[6*7^n - 1], Print[n]], {n, 0, 5650}]
  • PARI
    for(n=0,2000, if(isprime(6*7^n-1),print1(n, ", ")))

Extensions

One more term from Jason Earls, Jul 21 2001
More terms from Robert G. Wilson v, Jan 17 2003
One more term from Ryan Propper, Jun 05 2006
a(20)-a(22) from Donovan Johnson, Nov 26 2008
First term 0 inserted by Georg Fischer, Aug 01 2019
a(23) from Riley Fisher, Dec 02 2024

A005541 Numbers k such that 8*3^k - 1 is prime.

Original entry on oeis.org

0, 1, 2, 4, 10, 17, 50, 170, 184, 194, 209, 641, 1298, 4034, 5956, 7154, 9970, 35956, 42730, 132004, 190610
Offset: 1

Views

Author

Keywords

Comments

a(22) > 2*10^5. - Robert Price, Mar 16 2014
All terms are verified primes (i.e., not probable primes). - Robert Price, Mar 16 2014
896701 is a term, found in 2010 (see link). - Jeppe Stig Nielsen, Jul 31 2020

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Extensions

More terms from Douglas Burke (dburke(AT)nevada.edu)
0 prepended by Vincenzo Librandi, Sep 26 2012
a(18)-a(21) from Robert Price, Mar 16 2014

A181490 Numbers k such that 3*2^k-1 and 3*2^k+1 are twin primes (A001097).

Original entry on oeis.org

1, 2, 6, 18
Offset: 1

Views

Author

M. F. Hasler, Oct 30 2010

Keywords

Comments

Sequences A181491 and A181492 list the corresponding primes.
No more terms below three million. - Charles R Greathouse IV, Mar 14 2011
Intersection of A002235 and A002253. - Jeppe Stig Nielsen, Mar 05 2018

Crossrefs

Programs

  • GAP
    Filtered([1..300],k->IsPrime(3*2^k-1) and IsPrime(3*2^k+1)); # Muniru A Asiru, Mar 11 2018
  • Maple
    a:=k->`if`(isprime(3*2^k-1) and isprime(3*2^k+1),k,NULL); seq(a(k),k=1..1000); # Muniru A Asiru, Mar 11 2018
  • Mathematica
    fQ[n_] := PrimeQ[3*2^n - 1] && PrimeQ[3*2^n + 1]; k = 1; lst= {}; While[k < 15001, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ] (* Robert G. Wilson v, Nov 05 2010 *)
    Select[Range[20],AllTrue[3*2^#+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 24 2014 *)
  • PARI
    for( k=1,999, ispseudoprime(3<
    				

Formula

Equals { k | A007283(k) in A014574 } = { k | A153893(k) in A001359 }.

Extensions

Pari program repaired by Charles R Greathouse IV, Mar 14 2011

A066466 Numbers having just one anti-divisor.

Original entry on oeis.org

3, 4, 6, 96, 393216
Offset: 1

Views

Author

Robert G. Wilson v, Jan 02 2002

Keywords

Comments

See A066272 for definition of anti-divisor.
Jon Perry calls these anti-primes.
A066272(a(n)) = 1.
From Max Alekseyev, Jul 23 2007; updated Jun 25 2025: (Start)
Except for a(2) = 4, the terms of A066466 have form 2^k*p where p is odd prime and both 2^(k+1)*p-1, 2^(k+1)*p+1 are prime (i.e., twin primes). In other words, this sequence, omitting 4, is a subsequence of A040040 containing elements of the form 2^k*p with prime p.
Furthermore, since 2^(k+1)*p-1, 2^(k+1)*p+1 must equal -1 and +1 modulo 3, the number 2^(k+1)*p must be 0 modulo 3, implying that p=3. Therefore every term, except 4, must be of the form 3*2^k such that 3*2^(k+1)-1, 3*2^(k+1)+1 are twin primes. In other words, k+1 belongs to the intersection of A002253 and A002235.
According to Ballinger and Keller's lists, there are no other such k up to 22*10^6. Therefore a(6) (if it exists) is greater than 3*2^(22*10^6) ~= 10^6622660. (End)
From Daniel Forgues, Nov 23 2009: (Start)
The 2 last known anti-primes seem to relate to the Fermat primes (coincidence?):
96 = 3 * 2^5 = 3 * 2^F_1 = 3 * 2^[2^(2^1) + 1] and
393216 = 3 * 2^17 = 3 * 2^F_2 = 3 * 2^[2^(2^2) + 1],
where F_k is the k-th Fermat prime. (End)

Crossrefs

Programs

  • Mathematica
    antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 & ], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n & ]; Select[ Range[10^5], Length[ antid[ # ]] == 1 & ]

Extensions

Edited by Max Alekseyev, Oct 13 2009

A268061 Numbers k such that 7*8^k - 1 is prime.

Original entry on oeis.org

3, 7, 15, 59, 6127, 8703, 11619, 23403, 124299
Offset: 1

Views

Author

Robert Price, Jan 25 2016

Keywords

Comments

a(10) > 2*10^5.
Terms are A001771(n)/3 that are integers.

References

  • R. K. Guy, Unsolved Problems in Theory of Numbers, Section A3.

Crossrefs

Cf. similar sequences of the form k*(k+1)^n-1: A003307 (k=2), ... (k=3), A046865 (k=4), A079906 (k=5), A046866 (k=6), this sequence (k=7), ... (k=8), A056725 (k=9), A046867 (k=10), A079907 (k=11).

Programs

  • Mathematica
    Select[Range[0, 200000], PrimeQ[7*8^# - 1] &]
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(7*8^n-1), print1(n, ", "))) \\ Altug Alkan, Jan 25 2016

A281993 Integers m such that sigma(m) + sigma(2*m) = 6*m.

Original entry on oeis.org

10, 44, 184, 752, 12224, 49024, 12580864, 206158168064, 885443715520878608384, 226673591177468092350464, 232113757366000005450563584, 3894222643901120685369075227951104, 1020847100762815390371677078221595082752, 17126972312471518572699356075530215722269540352
Offset: 1

Views

Author

Michel Marcus, Feb 04 2017

Keywords

Comments

This is the case h = 2 of the h-perfect numbers as defined in the Harborth link.

Examples

			10 is a term since sigma(10) + sigma(20) = 60, that is 6*10.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^7], DivisorSigma[1, #] + DivisorSigma[1, 2 #] == 6 # &] (* Michael De Vlieger, Feb 04 2017 *)
  • PARI
    isok(n, h=2) = sigma(n) + sigma(h*n) == 2*n*(h+1);

Formula

a(n) = 2^A002235(n+1) * A007505(n+1). - Daniel Suteu, Feb 08 2017 [See Harborth link for a proof.]

Extensions

More terms from Jinyuan Wang, Feb 11 2020

A097214 Numbers m such that A076078(m) = m, where A076078(m) equals the number of sets of distinct positive integers with a least common multiple of m.

Original entry on oeis.org

1, 2, 4, 8, 10, 16, 32, 44, 64, 128, 184, 256, 512, 752, 1024, 2048, 4096, 8192, 12224, 16384, 32768, 49024, 61064, 65536, 131072, 262144, 524288, 981520, 1048576, 2097152, 4194304, 8388608, 12580864, 16777216, 33554432, 67108864, 134217728
Offset: 1

Views

Author

Matthew Vandermast, Aug 12 2004

Keywords

Comments

Contains all powers of 2 (A000079). Union of A000079 and A097215.
If 3*2^k - 1 is prime then 2^k*(3*2^k-1) is in the sequence. So 2^A002235*(3*2^A002235-1) is a subsequence of this sequence. - Farideh Firoozbakht, Aug 06 2005

Examples

			A total of 10 sets of distinct positive integers have a least common multiple of 10: {1,2,5}, {1,2,5,10}, {1,2,10}, {1,5,10}, {1,10}, {2,5}, {2,5,10}, {2,10}, {5,10} and {10}. Hence 10 is in the sequence.
		

Crossrefs

Extensions

a(26) corrected by Jinyuan Wang, Feb 11 2020

A097215 Numbers m such that A076078(m) = m and bigomega(m) >= 2; or in other words, A097214, excluding powers of 2.

Original entry on oeis.org

10, 44, 184, 752, 12224, 49024, 61064, 981520, 12580864, 206158168064, 16492668126208, 1080863908958322688, 18374686467592175488, 885443715520878608384, 4703919738602662723328, 226673591177468092350464, 232113757366000005450563584, 3894222643901120685369075227951104
Offset: 1

Views

Author

Matthew Vandermast, Aug 12 2004

Keywords

Comments

A076078(m) equals the number of sets of distinct positive integers with a least common multiple of m.
If 3*2^k - 1 is an odd prime then 2^k*(3*2^k-1) is in the sequence. - Farideh Firoozbakht, May 03 2009
For what seems to be an appearance of this sequence in a different context, see Harborth (2013). - N. J. A. Sloane, Jun 08 2013

Examples

			For example, there are 184 sets of distinct positive integers with a least common multiple of 184.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors[n]}, Plus @@ (MoebiusMu[n/d](2^DivisorSigma[0, d] - 1))]; t = Union[ Table[ f[n], {n, 28000000}]]; Select[t, f[ # ] == # && !IntegerQ[ Log[2, # ]] &] (* Robert G. Wilson v, Aug 17 2004 *)
  • PARI
    A076078(n) = {local(f, l, s, t, q); f = factor(n); l = matsize(f)[1]; s = 0; forvec(v = vector(l, i, [0, 1]), q = sum(i = 1, l, v[i]); t = (-1)^(l - q)*2^prod(i = 1, l, f[i, 2] + v[i]); s += t); s; }
    lista(nn) = {my(w=List([]), m=1, q=2, g); for(k=1, logint(nn, 2)-1, q=nextprime(q+1); m=m*q; for(r=1, nn\2^k-1, g=factor(A076078(m*2^r))[, 2]; if(#g==k+1&&g[2]==1, listput(w, A076078(m*2^r))))); Set(w); } \\ Jinyuan Wang, Feb 11 2020

Extensions

More terms from Robert G. Wilson v, Aug 18 2004
More terms from Jinyuan Wang, Feb 11 2020

A230527 Numbers n such that 3^6*2^n - 1 is prime.

Original entry on oeis.org

5, 17, 23, 113, 125, 173, 199, 319, 377, 397, 785, 937, 2167, 3785, 3977, 5957, 7727, 8249, 14677, 19577, 20485, 36319, 57509, 60703, 66677, 76877, 77017, 83407, 229405, 1003373
Offset: 1

Views

Author

Lei Zhou, Oct 22 2013

Keywords

Comments

Riesel Primes with k = 3^6 = 729.
Checked up to n = 1003600.

Examples

			729*2^5-1=23327 is a prime number.
		

Crossrefs

Programs

  • Mathematica
    b=3^6; i=0; Table[While[i++; cp=b*2^i-1; !PrimeQ[cp]]; i, {j, 1, 15}]
  • PARI
    is(n)=ispseudoprime(3^6*2^n-1) \\ Charles R Greathouse IV, May 22 2017

Extensions

Lei Zhou, Nov 08 2013, added a Mathematica program for small elements.
Previous Showing 11-20 of 38 results. Next