A079907
Numbers n such that 11*12^n -1 is prime.
Original entry on oeis.org
1, 2, 21, 25, 33, 54, 78, 235, 1566, 2273, 2310, 4121, 7775, 42249, 105974, 138961
Offset: 1
- R. K. Guy, Unsolved Problems in Theory of Numbers, Section A3.
-
[n: n in [1..600]| IsPrime(11*12^n - 1)]; // Vincenzo Librandi, Mar 21 2015
-
Do[ If[ PrimeQ[11*12^n - 1], Print[n]], {n, 1, 2000}]
Select[Range[10000], PrimeQ[(11 12^# - 1)] &] (* Vincenzo Librandi, Mar 21 2015 *)
-
for(n=1,2000, if(isprime(11*12^n-1),print1(n, ", ")))
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 05 2008
A046866
Numbers k such that 6*7^k - 1 is prime.
Original entry on oeis.org
0, 1, 2, 7, 18, 55, 69, 87, 119, 141, 189, 249, 354, 1586, 2135, 2865, 2930, 4214, 7167, 67485, 74402, 79326, 231349
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, Section A3.
-
Do[ If[ PrimeQ[6*7^n - 1], Print[n]], {n, 0, 5650}]
-
for(n=0,2000, if(isprime(6*7^n-1),print1(n, ", ")))
A005541
Numbers k such that 8*3^k - 1 is prime.
Original entry on oeis.org
0, 1, 2, 4, 10, 17, 50, 170, 184, 194, 209, 641, 1298, 4034, 5956, 7154, 9970, 35956, 42730, 132004, 190610
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
More terms from Douglas Burke (dburke(AT)nevada.edu)
A181490
Numbers k such that 3*2^k-1 and 3*2^k+1 are twin primes (A001097).
Original entry on oeis.org
-
Filtered([1..300],k->IsPrime(3*2^k-1) and IsPrime(3*2^k+1)); # Muniru A Asiru, Mar 11 2018
-
a:=k->`if`(isprime(3*2^k-1) and isprime(3*2^k+1),k,NULL); seq(a(k),k=1..1000); # Muniru A Asiru, Mar 11 2018
-
fQ[n_] := PrimeQ[3*2^n - 1] && PrimeQ[3*2^n + 1]; k = 1; lst= {}; While[k < 15001, If[fQ@k, AppendTo[lst, k]; Print@k]; k++ ] (* Robert G. Wilson v, Nov 05 2010 *)
Select[Range[20],AllTrue[3*2^#+{1,-1},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 24 2014 *)
-
for( k=1,999, ispseudoprime(3<
A066466
Numbers having just one anti-divisor.
Original entry on oeis.org
3, 4, 6, 96, 393216
Offset: 1
-
antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 & ], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n & ]; Select[ Range[10^5], Length[ antid[ # ]] == 1 & ]
A268061
Numbers k such that 7*8^k - 1 is prime.
Original entry on oeis.org
3, 7, 15, 59, 6127, 8703, 11619, 23403, 124299
Offset: 1
- R. K. Guy, Unsolved Problems in Theory of Numbers, Section A3.
-
Select[Range[0, 200000], PrimeQ[7*8^# - 1] &]
-
lista(nn) = for(n=1, nn, if(ispseudoprime(7*8^n-1), print1(n, ", "))) \\ Altug Alkan, Jan 25 2016
A281993
Integers m such that sigma(m) + sigma(2*m) = 6*m.
Original entry on oeis.org
10, 44, 184, 752, 12224, 49024, 12580864, 206158168064, 885443715520878608384, 226673591177468092350464, 232113757366000005450563584, 3894222643901120685369075227951104, 1020847100762815390371677078221595082752, 17126972312471518572699356075530215722269540352
Offset: 1
10 is a term since sigma(10) + sigma(20) = 60, that is 6*10.
-
Select[Range[10^7], DivisorSigma[1, #] + DivisorSigma[1, 2 #] == 6 # &] (* Michael De Vlieger, Feb 04 2017 *)
-
isok(n, h=2) = sigma(n) + sigma(h*n) == 2*n*(h+1);
A097214
Numbers m such that A076078(m) = m, where A076078(m) equals the number of sets of distinct positive integers with a least common multiple of m.
Original entry on oeis.org
1, 2, 4, 8, 10, 16, 32, 44, 64, 128, 184, 256, 512, 752, 1024, 2048, 4096, 8192, 12224, 16384, 32768, 49024, 61064, 65536, 131072, 262144, 524288, 981520, 1048576, 2097152, 4194304, 8388608, 12580864, 16777216, 33554432, 67108864, 134217728
Offset: 1
A total of 10 sets of distinct positive integers have a least common multiple of 10: {1,2,5}, {1,2,5,10}, {1,2,10}, {1,5,10}, {1,10}, {2,5}, {2,5,10}, {2,10}, {5,10} and {10}. Hence 10 is in the sequence.
A097215
Numbers m such that A076078(m) = m and bigomega(m) >= 2; or in other words, A097214, excluding powers of 2.
Original entry on oeis.org
10, 44, 184, 752, 12224, 49024, 61064, 981520, 12580864, 206158168064, 16492668126208, 1080863908958322688, 18374686467592175488, 885443715520878608384, 4703919738602662723328, 226673591177468092350464, 232113757366000005450563584, 3894222643901120685369075227951104
Offset: 1
For example, there are 184 sets of distinct positive integers with a least common multiple of 184.
-
f[n_] := Block[{d = Divisors[n]}, Plus @@ (MoebiusMu[n/d](2^DivisorSigma[0, d] - 1))]; t = Union[ Table[ f[n], {n, 28000000}]]; Select[t, f[ # ] == # && !IntegerQ[ Log[2, # ]] &] (* Robert G. Wilson v, Aug 17 2004 *)
-
A076078(n) = {local(f, l, s, t, q); f = factor(n); l = matsize(f)[1]; s = 0; forvec(v = vector(l, i, [0, 1]), q = sum(i = 1, l, v[i]); t = (-1)^(l - q)*2^prod(i = 1, l, f[i, 2] + v[i]); s += t); s; }
lista(nn) = {my(w=List([]), m=1, q=2, g); for(k=1, logint(nn, 2)-1, q=nextprime(q+1); m=m*q; for(r=1, nn\2^k-1, g=factor(A076078(m*2^r))[, 2]; if(#g==k+1&&g[2]==1, listput(w, A076078(m*2^r))))); Set(w); } \\ Jinyuan Wang, Feb 11 2020
A230527
Numbers n such that 3^6*2^n - 1 is prime.
Original entry on oeis.org
5, 17, 23, 113, 125, 173, 199, 319, 377, 397, 785, 937, 2167, 3785, 3977, 5957, 7727, 8249, 14677, 19577, 20485, 36319, 57509, 60703, 66677, 76877, 77017, 83407, 229405, 1003373
Offset: 1
729*2^5-1=23327 is a prime number.
-
b=3^6; i=0; Table[While[i++; cp=b*2^i-1; !PrimeQ[cp]]; i, {j, 1, 15}]
-
is(n)=ispseudoprime(3^6*2^n-1) \\ Charles R Greathouse IV, May 22 2017
Lei Zhou, Nov 08 2013, added a Mathematica program for small elements.
Comments