cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 50 results.

A332134 a(n) = (10^(2n+1)-1)/3 + 10^n.

Original entry on oeis.org

4, 343, 33433, 3334333, 333343333, 33333433333, 3333334333333, 333333343333333, 33333333433333333, 3333333334333333333, 333333333343333333333, 33333333333433333333333, 3333333333334333333333333, 333333333333343333333333333, 33333333333333433333333333333, 3333333333333334333333333333333
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

There are no primes in this sequence because a(n) = round(n*2/3)*(5*10^n-1).

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332124 .. A332194 (variants with different repeated digit 2, ..., 9).
Cf. A332130 .. A332139 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332134 := n -> (10^(2*n+1)-1)/3+10^n;
  • Mathematica
    Array[ (10^(2 # + 1)-1)/3 + 10^# &, 15, 0]
  • PARI
    apply( {A332134(n)=10^(n*2+1)\3+10^n}, [0..15])
    
  • Python
    def A332134(n): return 10**(n*2+1)//3+10**n

Formula

a(n) = 3*A138148(n) + 4*10^n = A002277(2n+1) + 10^n.
G.f.: (4 - 101*x - 200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332138 a(n) = (10^(2*n+1)-1)/3 + 5*10^n.

Original entry on oeis.org

8, 383, 33833, 3338333, 333383333, 33333833333, 3333338333333, 333333383333333, 33333333833333333, 3333333338333333333, 333333333383333333333, 33333333333833333333333, 3333333333338333333333333, 333333333333383333333333333, 33333333333333833333333333333, 3333333333333338333333333333333
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A183177 = {1, 7, 85, 94, 273, 356, ...} for the indices of primes.

Crossrefs

Cf. (A077792-1)/2 = A183177: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332118 .. A332178, A181965 (variants with different repeated digit 1, ..., 9).
Cf. A332130 .. A332139 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332138 := n -> (10^(2*n+1)-1)/3+5*10^n;
  • Mathematica
    Array[ (10^(2 # + 1)-1)/3 + 5*10^# &, 15, 0]
  • PARI
    apply( {A332138(n)=10^(n*2+1)\3+5*10^n}, [0..15])
    
  • Python
    def A332138(n): return 10**(n*2+1)//3+5*10**n

Formula

a(n) = 3*A138148(n) + 8*10^n = A002277(2n+1) + 5*10^n.
G.f.: (8 - 505*x + 200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A365644 Array read by ascending antidiagonals: A(n, k) = k*(10^n - 1)/9 with k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 11, 2, 0, 0, 111, 22, 3, 0, 0, 1111, 222, 33, 4, 0, 0, 11111, 2222, 333, 44, 5, 0, 0, 111111, 22222, 3333, 444, 55, 6, 0, 0, 1111111, 222222, 33333, 4444, 555, 66, 7, 0, 0, 11111111, 2222222, 333333, 44444, 5555, 666, 77, 8, 0
Offset: 0

Views

Author

Stefano Spezia, Sep 14 2023

Keywords

Examples

			The array begins:
  0,     0,     0,     0,     0,     0, ...
  0,     1,     2,     3,     4,     5, ...
  0,    11,    22,    33,    44,    55, ...
  0,   111,   222,   333,   444,   555, ...
  0,  1111,  2222,  3333,  4444,  5555, ...
  0, 11111, 22222, 33333, 44444, 55555, ...
  ...
		

Crossrefs

Cf. A000004 (n=0 or k=0), A001477 (n=1), A002275 (k=1), A002276 (k=2), A002277 (k=3), A002278 (k=4), A002279 (k=5), A002280 (k=6), A002281 (k=7), A002282 (k=8), A002283 (k=9), A008593 (n=2), A053422 (main diagonal), A105279 (k=10), A132583, A177769 (n=3), A365645 (antidiagonal sums), A365646.

Programs

  • Mathematica
    A[n_,k_]:=k(10^n-1)/9; Table[A[n-k,k],{n,0,9},{k,0,n}]//Flatten

Formula

O.g.f.: x*y/((1 - x)*(1 - 10*x)*(1 - y)^2).
E.g.f.: y*exp(x+y)*(exp(9*x) - 1)/9.
A(n, 11) = A132583(n-1) for n > 0.
A(n, 12) = A073551(n+1) for n > 0.

A271528 a(n) = 2*(10^n - 1)^2/27.

Original entry on oeis.org

0, 6, 726, 73926, 7405926, 740725926, 74073925926, 7407405925926, 740740725925926, 74074073925925926, 7407407405925925926, 740740740725925925926, 74074074073925925925926, 7407407407405925925925926, 740740740740725925925925926, 74074074074073925925925925926
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

All terms are multiple of 6.
Converges in a 10-adic sense to ...925925925926.
A transformation of the Wonderful Demlo numbers (A002477).
More generally, the ordinary generating function for the transformation of the Wonderful Demlo numbers, is k*x*(1 + 10*x)/(1 - 111*x + 1110*x^2 - 1000*x^3).

Examples

			n=1:                  6 = 2 * 3;
n=2:                726 = 22 * 33;
n=3:              73926 = 222 * 333;
n=4:            7405926 = 2222 * 3333;
n=5:          740725926 = 22222 * 33333;
n=6:        74073925926 = 222222 * 333333;
n=7:      7407405925926 = 2222222 * 3333333;
n=8:    740740725925926 = 22222222 * 33333333;
n=9:  74074073925925926 = 222222222 * 333333333, etc.
		

Crossrefs

Cf. similar sequences of the form k*((10^n - 1)/9)^2: A075411 (k=4), this sequence (k=6), A075412 (k=9), A075413 (k=16), A178630 (k=18), A075414 (k=25), A178631 (k=27), A075415 (k=36), A178632 (k=45), A075416 (k=49), A178633 (k=54), A178634 (k=63), A075417 (k=64), A178635 (k=72), A059988 (k=81).

Programs

  • Mathematica
    Table[2 ((10^n - 1)^2/27), {n, 0, 15}]
    LinearRecurrence[{111, -1110, 1000}, {0, 6, 726}, 16]
  • PARI
    x='x+O('x^99); concat(0, Vec(6*x*(1+10*x)/(1-111*x+1110*x^2-1000*x^3))) \\ Altug Alkan, Apr 09 2016
    
  • Python
    for n in range(0,10**1):print((int)((2*(10**n-1)**2)/27))
    # Soumil Mandal, Apr 10 2016

Formula

O.g.f.: 6*x*(1 + 10*x)/(1 - 111*x + 1110*x^2 - 1000*x^3).
E.g.f.: 2 (exp(x) - 2*exp(10*x) + exp(100*x))/27.
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3).
a(n) = 6*A002477(n) = 6*A002275(n)^2 = A002276(n)*A002277(n) = sqrt(A075411(n)*A075412(n)).
Sum_{n>=1} 1/a(n) = 0.1680577405662077350849154881928636039793563...
Lim_{n -> infinity} a(n + 1)/a(n) = 100.

A274986 Numbers k such that (10^k + 23)/3 is prime.

Original entry on oeis.org

1, 2, 6, 146, 326, 380, 1116, 1866, 4808, 5528, 5730, 21836, 24804, 38724
Offset: 1

Views

Author

Vincenzo Librandi, Sep 25 2016

Keywords

Comments

Also numbers k for which A093137(k) + 7 or A002277(k) + 8 is prime.

Crossrefs

Cf. numbers k such that (10^k+m)/3 is prime: A099411 (m=11), this sequence (m=23).

Programs

  • Magma
    [n: n in [0..400] | IsPrime((10^n+23) div 3)];
    
  • Mathematica
    Select[Range[1000], PrimeQ[(10^# + 23) / 3] &]
  • PARI
    is(n)=ispseudoprime((10^n+23)/3) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

a(9)-a(11) from Michael S. Branicky, Aug 16 2021
a(12)-a(13) from Michael S. Branicky, May 14 2023
a(14) from Kamada data by Tyler Busby, May 05 2024

A332135 a(n) = (10^(2n+1)-1)/3 + 2*10^n.

Original entry on oeis.org

5, 353, 33533, 3335333, 333353333, 33333533333, 3333335333333, 333333353333333, 33333333533333333, 3333333335333333333, 333333333353333333333, 33333333333533333333333, 3333333333335333333333333, 333333333333353333333333333, 33333333333333533333333333333, 3333333333333335333333333333333
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A183175 = {1, 2, 17, 79, 118, 162, 177, ...} for the indices of primes.

Crossrefs

Cf. (A077784-1)/2 = A183175: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332125 .. A332195 (variants with different repeated digit 2, ..., 9).
Cf. A332130 .. A332139 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332135 := n -> (10^(2*n+1)-1)/3+2*10^n;
  • Mathematica
    Array[ (10^(2 # + 1)-1)/3 + 2*10^# &, 15, 0]
  • PARI
    apply( {A332135(n)=10^(n*2+1)\3+2*10^n}, [0..15])
    
  • Python
    def A332135(n): return 10**(n*2+1)//3+2*10**n

Formula

a(n) = 3*A138148(n) + 5*10^n = A002277(2n+1) + 2*10^n.
G.f.: (5 - 202*x - 100*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: exp(x)*(10*exp(99*x) + 6*exp(9*x) - 1)/3. - Stefano Spezia, Sep 24 2024

A332136 a(n) = 3*(10^(2n+1)-1)/9 + 3*10^n.

Original entry on oeis.org

6, 363, 33633, 3336333, 333363333, 33333633333, 3333336333333, 333333363333333, 33333333633333333, 3333333336333333333, 333333333363333333333, 33333333333633333333333, 3333333333336333333333333, 333333333333363333333333333, 33333333333333633333333333333, 3333333333333336333333333333333
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332126 .. A332196 (variants with different repeated digit 2, ..., 9).
Cf. A332130 .. A332139 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332136 := n -> (10^(2*n+1)-1)/3+3*10^n);
  • Mathematica
    Array[ (10^(2 # + 1)-1)/3 + 3*10^# &, 15, 0]
  • PARI
    apply( {A332136(n)=10^(n*2+1)\3+3*10^n}, [0..15])
    
  • Python
    def A332136(n): return 10**(n*2+1)//3+3*10**n

Formula

a(n) = 3*A138148(n) + 6*10^n = A002277(2n+1) + 3*10^n = 3*A332112(n).
G.f.: (6 - 303*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332137 a(n) = (10^(2n+1)-1)/3 + 4*10^n.

Original entry on oeis.org

7, 373, 33733, 3337333, 333373333, 33333733333, 3333337333333, 333333373333333, 33333333733333333, 3333333337333333333, 333333333373333333333, 33333333333733333333333, 3333333333337333333333333, 333333333333373333333333333, 33333333333333733333333333333, 3333333333333337333333333333333
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A183176 = {1, 3, 7, 11, 13, 17, 29, 31, ...} for the indices of primes.

Crossrefs

Cf. (A077790-1)/2 = A183176: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002277 (3*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332127 .. A332197 (variants with different repeated digit 2, ..., 9).
Cf. A332130 .. A332139 (variants with different middle digit 0, ..., 9).

Programs

  • Maple
    A332137 := n -> (10^(2*n+1)-1)/3+4*10^n;
  • Mathematica
    Array[ (10^(2 # + 1)-1)/3 + 4*10^# &, 15, 0]
  • PARI
    apply( {A332137(n)=10^(n*2+1)\3+4*10^n}, [0..15])
    
  • Python
    def A332137(n): return 10**(n*2+1)//3+4*10**n

Formula

a(n) = 3*A138148(n) + 7*10^n = A002277(2n+1) + 4*10^n.
G.f.: (7 - 404*x + 100*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A361820 Palindromes in A329150.

Original entry on oeis.org

0, 2, 3, 5, 7, 11, 22, 33, 55, 77, 202, 222, 232, 252, 272, 303, 313, 323, 333, 353, 373, 505, 525, 535, 555, 575, 707, 717, 727, 737, 757, 777, 1111, 2002, 2112, 2222, 2332, 2552, 2772, 3003, 3113, 3223, 3333, 3553, 3773, 5005, 5115, 5225, 5335, 5555, 5775, 7007, 7117
Offset: 1

Views

Author

Bernard Schott, Mar 25 2023

Keywords

Comments

If m is a palindrome with no digit greater than 5 in A118597, then A329147(m) is a term, but there exist terms that are not of this form as 313, 717, ...

Examples

			232 is a term which has two preimages since A329147(91) = A329147(121) = 232.
313 = A329147(26) is a term whose preimage is not in A118597.
2002 is a term since A329147(1001) = 2002.
2112 is a term since A329147(151) = 2112.
27172 = A329147(1471) is a term whose preimage is not in A118597.
		

Crossrefs

Intersection of A002113 and A329150.

Programs

  • Mathematica
    p[n_] := If[n > 0, Prime[n], 0]; seq[ndigmax_] := Module[{t = Table[FromDigits[ Flatten@ IntegerDigits@ (p /@ IntegerDigits[n])], {n, 0, 10^ndigmax - 1}]}, Union@ Select[t, # < 10^ndigmax && PalindromeQ[#] &]]; seq[4] (* Amiram Eldar, Mar 26 2023 *)
  • PARI
    ispal(n) = my(d=digits(n)); d==Vecrev(d);
    f(n) = if (n, fromdigits(concat(apply(d -> if (d, digits(prime(d)), [0]), digits(n)))), 0); \\ A329147
    lista(nn) = my(list = List(), m); for (n=0, nn, m = f(n); if ((m <= nn) && ispal(m), listput(list, m));); vecsort(Set(list)); \\ Michel Marcus, Mar 26 2023

A385515 Repdigit numbers whose square does not contain the repeated digit.

Original entry on oeis.org

2, 3, 4, 7, 8, 9, 22, 33, 44, 77, 88, 333, 444, 3333, 33333, 44444, 88888, 333333, 3333333, 33333333, 333333333, 3333333333, 33333333333, 333333333333, 3333333333333, 33333333333333, 333333333333333, 3333333333333333, 33333333333333333, 333333333333333333
Offset: 1

Views

Author

Gonzalo Martínez, Jul 01 2025

Keywords

Comments

For n >= 18, all terms are of the form 33...3; that is, elements of A002277.
A002277(m) is a term, for m > 0. Proof: 3 is in a(n) because 3^2 = 9. If 33...3 is composed of k 3's, with k > 1, it is satisfied that 33...3^2 = 11...1088...89; i.e., (k - 1) 1's followed by a 0, then (k - 1) 8's and a 9, so that 3 is not among the digits of its square.
Let's see that there are no other terms of the form 33...3 besides 2, 4, 7, 8, 9, 22, 44, 77, 88, 444, 44444, 88888. In this sequence there are no repdigits of the form 11...1, 55...5, 66...6, since their squares end in 1, 5 and 6 respectively. On the other hand, 9 is the only number of the form 999...9, since if it has 2 or more 9's its square starts with 9. Suppose that dd...d contains 6 or more digits. We already saw that the cases d = 1, 5, 6 and 9 are discarded. Let us analyze what happens for d = 2, 4, 7 and 8:
For d = 2, we have that 22...2^2 == 284 (mod 10^3).
For d = 4, we have that 44...4^2 == 469136 (mod 10^6).
For d = 7, we have that 77...7^2 == 729 (mod 10^3).
For d = 8, we have that 88...8^2 == 876544 (mod 10^6).
Thus, we conclude that a(n) only consists of digits 3 for n >= 18. And, in fact, a(n) consists of (n - 12) 3's.

Examples

			22 is a term since 22^2 = 484 does not contain the digit 2.
		

Crossrefs

Intersection of A010785 and A029783.

Programs

  • Mathematica
    Select[Union@ Flatten@ Table[k (10^n - 1)/9, {k, 0, 9}, {n, 18}] ,ContainsNone[IntegerDigits[#^2],IntegerDigits[#]]&] (* James C. McMahon, Jul 07 2025 *)

Formula

a(n) = A002277(n - 12), for n >= 18.
Previous Showing 41-50 of 50 results.