cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A332171 a(n) = 7*(10^(2n+1)-1)/9 - 6*10^n.

Original entry on oeis.org

1, 717, 77177, 7771777, 777717777, 77777177777, 7777771777777, 777777717777777, 77777777177777777, 7777777771777777777, 777777777717777777777, 77777777777177777777777, 7777777777771777777777777, 777777777777717777777777777, 77777777777777177777777777777, 7777777777777771777777777777777
Offset: 0

Views

Author

M. F. Hasler, Feb 06 2020

Keywords

Comments

For n == 0 or n == 2 (mod 6), there is no obvious divisibility pattern.
According to M. Kamada, n = 116 is the only index of a prime up to n = 10^5.

Crossrefs

Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A002275 (repunits R_n = [10^n/9]), A002281 (7*R_n), A011557 (10^n).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332170 .. A332179 (variants with different middle digit 2, ..., 9).

Programs

  • Mathematica
    Array[7 (10^(2 # + 1) - 1)/9 - 6*10^# &, 15, 0] (* or *)
    CoefficientList[Series[(1 + 606 x - 1300 x^2)/((1 - x) (1 - 10 x) (1 - 100 x)), {x, 0, 15}], x] (* Michael De Vlieger, Feb 08 2020 *)
    Table[FromDigits[Join[PadRight[{},n,7],{1},PadRight[{},n,7]]],{n,0,20}] (* or *) LinearRecurrence[ {111,-1110,1000},{1,717,77177},20] (* Harvey P. Dale, Apr 04 2024 *)
  • PARI
    apply( {A332171(n)=10^(n*2+1)\9*7-6*10^n}, [0..15])
    
  • PARI
    Vec((1 + 606*x - 1300*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)) + O(x^15)) \\ Colin Barker, Feb 07 2020
    
  • Python
    def A332171(n): return 10**(n*2+1)//9*7-6*10^n

Formula

a(n) = 7*A138148(n) + 10^n.
For n == 1 (mod 3), 3 | a(n) and a(n)/3 = 259*(10^(2n+1)-1)/999 - 2*10^n;
for n == 3 or 5 (mod 6), 13 | a(n) and a(n)/13 = (A(n)-1)*10^n + B(n), where A(n) (resp. B(n)) are the n leftmost (resp. rightmost) digits of 59829*(10^(ceiling(n/6)*6)-1)/(10^6-1).
From Colin Barker, Feb 07 2020: (Start)
G.f.: (1 + 606*x - 1300*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2.
(End)
E.g.f.: (1/9)*exp(x)*(70*exp(99*x) - 54*exp(9*x) - 7). - Stefano Spezia, Feb 08 2020

A332179 a(n) = 7*(10^(2n+1)-1)/9 + 2*10^n.

Original entry on oeis.org

9, 797, 77977, 7779777, 777797777, 77777977777, 7777779777777, 777777797777777, 77777777977777777, 7777777779777777777, 777777777797777777777, 77777777777977777777777, 7777777777779777777777777, 777777777777797777777777777, 77777777777777977777777777777, 7777777777777779777777777777777
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

See A183183 = {1, 2, 8, 19, 20, 212, 280, ...} for the indices of primes.

Crossrefs

Cf. A138148 (cyclops numbers with binary digits only).
Cf. (A077796-1)/2 = A183183: indices of primes.
Cf. A002275 (repunits R_n = [10^n/9]), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332178 (variants with different middle digit 1, ..., 8).

Programs

  • Maple
    A332179 := n -> 7*(10^(n*2+1)-1)/9 + 2*10^n;
  • Mathematica
    Array[7 (10^(2 # + 1) - 1)/9 + 2*10^# &, 15, 0]
  • PARI
    apply( {A332179(n)=10^(n*2+1)\9*7+2*10^n}, [0..15])
    
  • Python
    def A332179(n): return 10**(n*2+1)//9*7+2*10^n

Formula

a(n) = 7*A138148(n) + 9*10^n.
G.f.: (9 - 202*x - 500*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A332178 a(n) = 7*(10^(2n+1)-1)/9 + 10^n.

Original entry on oeis.org

8, 787, 77877, 7778777, 777787777, 77777877777, 7777778777777, 777777787777777, 77777777877777777, 7777777778777777777, 777777777787777777777, 77777777777877777777777, 7777777777778777777777777, 777777777777787777777777777, 77777777777777877777777777777, 7777777777777778777777777777777
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Comments

See A183182 = {1, 3, 39, 54, 168, 240, ...} for the indices of primes.

Crossrefs

Cf. A138148 (cyclops numbers with binary digits only).
Cf. (A077793-1)/2 = A183182: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332179 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332178 := n -> 7*(10^(n*2+1)-1)/9 + 10^n;
  • Mathematica
    Array[7 (10^(2 # + 1) - 1)/9 + 10^# &, 15, 0]
  • PARI
    apply( {A332178(n)=10^(n*2+1)\9*7+10^n}, [0..15])
    
  • Python
    def A332178(n): return 10**(n*2+1)//9*7+10^n

Formula

a(n) = 7*A138148(n) + 8*10^n.
G.f.: (8 - 101*x - 600*x^2)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A180160 (sum of digits) mod (number of digits) of n in decimal representation.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 1, 2
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 15 2010

Keywords

Comments

a(n) = A007953(n) mod A055642(n);
a(A061383(n)) = 0; a(A180157(n)) > 0;
a(repdigits)=0: a(A010785(n))=0: a(A002275(n))=0: a(A002276(n))=0: a(A002277(n))=0: a(A002278(n))=0: a(4(n))=0: a(A002279(n))=0: a(A002280(n))=0: a(A002281(n))=0: a(A002282(n))=0: a(A002283(n))=0;
A123522 gives smallest m such that a(m) = n.

Crossrefs

Programs

  • Mathematica
    A180160[n_] := If[n == 0, 0, Mod[Total[#], Length[#]] & [IntegerDigits[n]]];
    Array[A180160, 100, 0] (* Paolo Xausa, Jun 30 2024 *)
    Join[{0},Table[Mod[Total[IntegerDigits[n]],IntegerLength[n]],{n,110}]] (* Harvey P. Dale, Jul 30 2025 *)

A178769 a(n) = (5*10^n + 13)/9.

Original entry on oeis.org

2, 7, 57, 557, 5557, 55557, 555557, 5555557, 55555557, 555555557, 5555555557, 55555555557, 555555555557, 5555555555557, 55555555555557, 555555555555557, 5555555555555557, 55555555555555557, 555555555555555557, 5555555555555555557, 55555555555555555557, 555555555555555555557
Offset: 0

Views

Author

Bruno Berselli, Jun 13 2010

Keywords

Crossrefs

Cf. A165246 (..17, 117, 1117,..), A173193 (..27, 227, 2227,..), A173766 (..37, 337, 3337,..), A173772 (..47, 447, 4447,..), A067275 (..67, 667, 6667,..), A002281 (..77, 777, 7777,..), A173812 (..87, 887, 8887,..), A173833 (..97, 997, 9997,..).
Cf. A093143.

Programs

  • GAP
    List([0..20], n -> (5*10^n+13)/9); # G. C. Greubel, Jan 24 2019
  • Magma
    [(5*10^n+13)/9: n in [0..20]]; // Vincenzo Librandi, Jun 06 2013
    
  • Mathematica
    CoefficientList[Series[(2 - 15 x) / ((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Jun 06 2013 *)
    LinearRecurrence[{11,-10},{2,7},20] (* Harvey P. Dale, Feb 28 2017 *)
  • PARI
    vector(20, n, n--; (5*10^n+13)/9) \\ G. C. Greubel, Jan 24 2019
    
  • Sage
    [(5*10^n+13)/9 for n in (0..20)] # G. C. Greubel, Jan 24 2019
    

Formula

a(n)^(4*k+2) + 1 == 0 (mod 250) for n > 1, k >= 0.
G.f.: (2-15*x)/((1-x)*(1-10*x)).
a(n) - 11*a(n-1) + 10*a(n-2) = 0 (n > 1).
a(n) = a(n-1) + 5*10^(n-1) = 10*a(n-1) - 13 for n > 0.
a(n) = 1 + Sum_{i=0..n} A093143(i). - Bruno Berselli, Feb 16 2015
E.g.f.: exp(x)*(5*exp(9*x) + 13)/9. - Elmo R. Oliveira, Sep 09 2024

A366596 Repdigit numbers that are divisible by 7.

Original entry on oeis.org

0, 7, 77, 777, 7777, 77777, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 7777777, 77777777, 777777777, 7777777777, 77777777777, 111111111111, 222222222222, 333333333333, 444444444444, 555555555555, 666666666666, 777777777777
Offset: 1

Views

Author

Kritsada Moomuang, Oct 14 2023

Keywords

Comments

7 divides a repdigit iff it consists of only digit 7, or has length 6*k (for any digit).
Repdigit remainders A010785(k) mod 7 have period 54. - Karl-Heinz Hofmann, Dec 04 2023

Crossrefs

Intersection of A008589 and A010785.
Cf. A002281 (a subsequence).
Cf. A305322 (divisor 3), A002279 (divisor 5), A083118 (the impossible divisors).

Programs

  • PARI
    r(n) = 10^((n+8)\9)\9*((n-1)%9+1); \\ A010785
    lista(nn) = select(x->!(x%7), vector(nn, k, r(k-1))); \\ Michel Marcus, Oct 26 2023
    
  • Python
    def A366596(n):
        digitlen, digit = (n+12)//14*6, (n+12)%14-4
        if digit < 1: digitlen += digit - 1; digit = 7
        return 10**digitlen // 9 * digit # Karl-Heinz Hofmann, Dec 04 2023

Formula

From Karl-Heinz Hofmann, Dec 04 2023: (Start)
a(n) = A010785(floor((n-2)/14)*54 + ((n-2) mod 14) + 41), for (n-2) mod 14 > 4.
a(n) = (10^(6*floor((n-2)/14) + 6)-1)/9*(((n-2) mod 14)-4), for (n-2) mod 14 > 4.
a(n) = A010785(floor((n-2)/14)*54 + ((n-2) mod 14)*9 + 7), for (n-2) mod 14 <= 4.
a(n) = (10^(6*floor((n-2)/14) + 1 + ((n-2) mod 14))-1)/9*7, for (n-2) mod 14 <= 4.
(End)

A332170 a(n) = 7*(10^(2n+1)-1)/9 - 7*10^n.

Original entry on oeis.org

0, 707, 77077, 7770777, 777707777, 77777077777, 7777770777777, 777777707777777, 77777777077777777, 7777777770777777777, 777777777707777777777, 77777777777077777777777, 7777777777770777777777777, 777777777777707777777777777, 77777777777777077777777777777, 7777777777777770777777777777777
Offset: 0

Views

Author

M. F. Hasler, Feb 08 2020

Keywords

Crossrefs

Cf. A002275 (repunits R_n = (10^n-1)/9), A002281 (7*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332120 .. A332190 (variants with different repeated digit 2, ..., 9).
Cf. A332171 .. A332179 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332170 := n -> 7*(10^(2*n+1)-1)/9-7*10^n;
  • Mathematica
    Array[7 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
  • PARI
    apply( {A332170(n)=(10^(n*2+1)\9-10^n)*7}, [0..15])
    
  • Python
    def A332170(n): return (10**(n*2+1)//9-10^n)*7

Formula

a(n) = 7*A138148(n) = A002281(2n+1) - 7*A011557(n).
G.f.: 7*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

A365644 Array read by ascending antidiagonals: A(n, k) = k*(10^n - 1)/9 with k >= 0.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 11, 2, 0, 0, 111, 22, 3, 0, 0, 1111, 222, 33, 4, 0, 0, 11111, 2222, 333, 44, 5, 0, 0, 111111, 22222, 3333, 444, 55, 6, 0, 0, 1111111, 222222, 33333, 4444, 555, 66, 7, 0, 0, 11111111, 2222222, 333333, 44444, 5555, 666, 77, 8, 0
Offset: 0

Views

Author

Stefano Spezia, Sep 14 2023

Keywords

Examples

			The array begins:
  0,     0,     0,     0,     0,     0, ...
  0,     1,     2,     3,     4,     5, ...
  0,    11,    22,    33,    44,    55, ...
  0,   111,   222,   333,   444,   555, ...
  0,  1111,  2222,  3333,  4444,  5555, ...
  0, 11111, 22222, 33333, 44444, 55555, ...
  ...
		

Crossrefs

Cf. A000004 (n=0 or k=0), A001477 (n=1), A002275 (k=1), A002276 (k=2), A002277 (k=3), A002278 (k=4), A002279 (k=5), A002280 (k=6), A002281 (k=7), A002282 (k=8), A002283 (k=9), A008593 (n=2), A053422 (main diagonal), A105279 (k=10), A132583, A177769 (n=3), A365645 (antidiagonal sums), A365646.

Programs

  • Mathematica
    A[n_,k_]:=k(10^n-1)/9; Table[A[n-k,k],{n,0,9},{k,0,n}]//Flatten

Formula

O.g.f.: x*y/((1 - x)*(1 - 10*x)*(1 - y)^2).
E.g.f.: y*exp(x+y)*(exp(9*x) - 1)/9.
A(n, 11) = A132583(n-1) for n > 0.
A(n, 12) = A073551(n+1) for n > 0.

A285094 Corresponding values of geometric means of digits of numbers from A061430.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 0, 2, 4, 0, 3, 0, 2, 4, 6, 0, 5, 0, 6, 0, 7, 0, 4, 8, 0, 3, 6, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2, 0, 3, 0, 2, 0, 0, 0, 0, 2, 4, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 2, 4, 0, 0, 0, 0, 4, 0
Offset: 0

Views

Author

Jaroslav Krizek, Apr 14 2017

Keywords

Crossrefs

Cf. A061430 (numbers with integer geometric mean of digits in base 10).
Sequences of numbers n such that a(n) = k for k = 0 - 9: A011540 (k = 0), A002275 (k = 1), A061426 (k = 2), A061427 (k = 3), A061428 (k = 4), A002279 (k = 5), A061429 (k = 6), A002281 (k = 7), A002282 (k = 8), A002283 (k = 9).

Programs

  • Magma
    [0] cat [Floor(&*Intseq(n) ^ (1/#Intseq(n))): n in [1..100000] | IsIntegral(&*Intseq(n) ^ (1/#Intseq(n)))];

A332172 a(n) = 7*(10^(2n+1)-1)/9 - 5*10^n.

Original entry on oeis.org

2, 727, 77277, 7772777, 777727777, 77777277777, 7777772777777, 777777727777777, 77777777277777777, 7777777772777777777, 777777777727777777777, 77777777777277777777777, 7777777777772777777777777, 777777777777727777777777777, 77777777777777277777777777777, 7777777777777772777777777777777
Offset: 0

Views

Author

M. F. Hasler, Feb 06 2020

Keywords

Comments

Indices of prime terms: {0, 1, 3, 7, 10, 12, 480, 949, ...} = A183178.

Crossrefs

Cf. A138148 (cyclops numbers with binary digits only).
Cf. A332171 (analog with middle digit 1).
Cf. (A077777-1)/2 = A183178: indices of primes.
Cf. A002275 (repunits R_n = [10^n/9]), A002281 (7*R_n), A011557 (10^n).
Cf. A332171 .. A332179 (variants with different middle digit 1, ..., 9).

Programs

  • Maple
    A332172 := n -> 7*(10^(n*2+1)-1)/9 -5*10^n;
  • Mathematica
    Array[7 (10^(2 # +1)-1)/9 -5*10^# &, 15, 0]
  • PARI
    apply( {A332172(n)=10^(n*2+1)\9*7-5*10^n}, [0..25])
    
  • Python
    def A332172(n): return 10**(n*2+1)//9*7-5*10^n

Formula

a(n) = 7*A138148(n) + 2*10^n.
G.f.: (2 + 505*x - 1200*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2.
Previous Showing 21-30 of 37 results. Next