A386699
a(n) = Sum_{k=0..n} 2^(n-k) * binomial(5*n,k).
Original entry on oeis.org
1, 7, 69, 733, 8061, 90462, 1028871, 11814376, 136643085, 1589311381, 18569375114, 217773347502, 2561944357311, 30219704365104, 357278540928168, 4232449819704768, 50227362114232109, 596988743410929087, 7105534815529752831, 84678089652554263155, 1010268312800732117946
Offset: 0
-
Table[(243/16)^n - Binomial[5*n, n]*(-1 + Hypergeometric2F1[1, -4*n, 1 + n, -1/2]), {n,0,25}] (* Vaclav Kotesovec, Jul 30 2025 *)
-
a(n) = sum(k=0, n, 2^(n-k)*binomial(5*n, k));
A206290
G.f.: Sum_{n>=0} Product_{k=1..n} Series_Reversion( x/(1 + x^k) ).
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 12, 17, 29, 44, 77, 114, 218, 330, 617, 987, 1913, 2968, 6068, 9500, 19263, 31399, 64268, 101702, 218891, 348559, 735823, 1205239, 2576727, 4119884, 9100854, 14588992, 31841260, 52163378, 114485092, 183947681, 414704366, 667453931, 1487920000
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 12*x^6 + 17*x^7 +...
such that, by definition,
A(x) = 1 + G_1(x) + G_1(x)*G_2(x) + G_1(x)*G_2(x)*G_3(x) + G_1(x)*G_2(x)*G_3(x)*G_4(x) +...
where G_n( x/(1 + x^n) ) = x.
The first few expansions of G_n(x) begin:
G_1(x) = x + x^2 + x^3 + x^4 + x^5 + x^6 +...+ x^(n+1) +...
G_2(x) = x + x^3 + 2*x^5 + 5*x^7 + 14*x^9 +...+ A000108(n)*x^(2*n+1) +...
G_3(x) = x + x^4 + 3*x^7 + 12*x^10 + 55*x^13 +...+ A001764(n)*x^(3*n+1) +...
G_4(x) = x + x^5 + 4*x^9 + 22*x^13 + 140*x^17 +...+ A002293(n)*x^(4*n+1) +...
G_5(x) = x + x^6 + 5*x^11 + 35*x^16 + 285*x^21 +...+ A002294(n)*x^(5*n+1) +...
G_6(x) = x + x^7 + 6*x^13 + 51*x^19 + 506*x^25 +...+ A002295(n)*x^(6*n+1) +...
G_7(x) = x + x^8 + 7*x^15 + 70*x^22 + 819*x^29 +...+ A002296(n)*x^(7*n+1) +...
Note that G_n(x) = x + x*G_n(x)^n.
-
{a(n)=polcoeff(sum(m=0,n,prod(k=1,m,serreverse(x/(1+x^k+x*O(x^n))))),n)}
for(n=0,45,print1(a(n),", "))
A235534
a(n) = binomial(6*n, 2*n) / (4*n + 1).
Original entry on oeis.org
1, 3, 55, 1428, 43263, 1430715, 50067108, 1822766520, 68328754959, 2619631042665, 102240109897695, 4048514844039120, 162250238001816900, 6568517413771094628, 268225186597703313816, 11034966795189838872624, 456949965738717944767791
Offset: 0
Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k:
A000108 (l=1, k=1),
A001764 (l=2, k=1),
A002293 (l=3, k=1),
A002294 (l=4, k=1),
A002295 (l=5, k=1),
A002296 (l=6, k=1),
A007556 (l=7, k=1),
A062994 (l=8, k=1),
A059968 (l=9, k=1),
A230388 (l=10, k=1),
A048990 (l=2, k=2), this sequence (l=4, k=2),
A235536 (l=6, k=2),
A187357 (l=3, k=3),
A235535 (l=6, k=3).
-
l:=4; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */
-
Table[Binomial[6 n, 2 n]/(4 n + 1), {n, 0, 20}]
A235535
a(n) = binomial(9*n, 3*n) / (6*n + 1).
Original entry on oeis.org
1, 12, 1428, 246675, 50067108, 11124755664, 2619631042665, 642312451217745, 162250238001816900, 41932353590942745504, 11034966795189838872624, 2946924270225408943665279, 796607831560617902288322405, 217550867863011281855594752680
Offset: 0
Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k:
A000108 (l=1, k=1),
A001764 (l=2, k=1),
A002293 (l=3, k=1),
A002294 (l=4, k=1),
A002295 (l=5, k=1),
A002296 (l=6, k=1),
A007556 (l=7, k=1),
A062994 (l=8, k=1),
A059968 (l=9, k=1),
A230388 (l=10, k=1),
A048990 (l=2, k=2),
A235534 (l=4, k=2),
A235536 (l=6, k=2),
A187357 (l=3, k=3), this sequence (l=6, k=3).
-
l:=6; k:=3; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* here l is divisible by all the prime factors of k */
-
seq(binomial(9*n,3*n)/(6*n+1), n=0..30); # Robert Israel, Feb 15 2021
-
Table[Binomial[9 n, 3 n]/(6 n + 1), {n, 0, 20}]
A337292
a(n) = 4*binomial(5*n,n)/(5*n-1).
Original entry on oeis.org
5, 20, 130, 1020, 8855, 81900, 791120, 7887660, 80560285, 838553320, 8863227100, 94871786100, 1026317094705, 11203116342560, 123243929011680, 1364973221797900, 15207477517956825, 170321264840835900, 1916512328325665070, 21655893753689280120
Offset: 1
A349582
G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^3 * A(x)^5.
Original entry on oeis.org
1, 3, 13, 85, 733, 7292, 78267, 880250, 10226237, 121713373, 1476272394, 18180126906, 226704989103, 2856790765238, 36321840773980, 465362291912648, 6002272018481901, 77873186277771107, 1015583616140910999, 13306207249869273003, 175064043975233981626
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = 1/(1 - 2 x) + x (1 - 2 x)^3 A[x]^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n, k] Binomial[5 k, k] 2^(n - k)/(4 k + 1), {k, 0, n}], {n, 0, 20}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(5*k,k)*2^(n-k)/(4*k+1)); \\ Michel Marcus, Nov 23 2021
A366037
G.f. A(x) satisfies: A(x) = x * (1 + A(x))^5 / (1 - 5 * A(x)).
Original entry on oeis.org
0, 1, 10, 160, 3110, 67155, 1548526, 37346040, 930513870, 23765376580, 618871054120, 16370119905880, 438628647940730, 11880264846822610, 324739360804852980, 8946782070689651280, 248184394985913218910, 6926162613387923126700, 194320992885495965332600, 5477763483026946993808960, 155070883903415687652796120
Offset: 0
-
nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^5/(1 - 5 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CoefficientList[InverseSeries[Series[x (1 - 5 x)/(1 + x)^5, {x, 0, 20}], x], x]
Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[5 n, n - k - 1] 5^k, {k, 0, n - 1}], {n, 1, 20}]]
A377526
E.g.f. satisfies A(x) = 1 + x*exp(x)*A(x)^5.
Original entry on oeis.org
1, 1, 12, 273, 9604, 460105, 27966126, 2062219117, 178897527768, 17853102321489, 2014988044093210, 253792946798597701, 35290880970687039732, 5370055269772474994713, 887591963820839894529654, 158357028389450319651183165, 30332317748593431632078480176, 6208425034878692992471996557217
Offset: 0
A378920
G.f. A(x) satisfies A(x) = 1 + x*A(x)^6/(1 + x*A(x)^2).
Original entry on oeis.org
1, 1, 5, 38, 339, 3308, 34191, 367844, 4076112, 46204209, 533239820, 6244542391, 74016115926, 886276231388, 10704869669941, 130271156244371, 1595708949486866, 19658780721376791, 243429900033986385, 3028086095940468087, 37821457123957529163, 474145963420441744445
Offset: 0
-
a(n, r=1, s=-1, t=6, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));
A235536
a(n) = binomial(8*n, 2*n) / (6*n + 1).
Original entry on oeis.org
1, 4, 140, 7084, 420732, 27343888, 1882933364, 134993766600, 9969937491420, 753310723010608, 57956002331347120, 4524678117939182220, 357557785658996609700, 28545588568201512137904, 2298872717007844035521848, 186533392975795702301759056
Offset: 0
Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k:
A000108 (l=1, k=1),
A001764 (l=2, k=1),
A002293 (l=3, k=1),
A002294 (l=4, k=1),
A002295 (l=5, k=1),
A002296 (l=6, k=1),
A007556 (l=7, k=1),
A062994 (l=8, k=1),
A059968 (l=9, k=1),
A230388 (l=10, k=1),
A048990 (l=2, k=2),
A235534 (l=4, k=2), this sequence (l=6, k=2),
A187357 (l=3, k=3),
A235535 (l=6, k=3).
-
l:=6; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */
-
Table[Binomial[8 n, 2 n]/(6 n + 1), {n, 0, 20}]
Comments