cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 130 results. Next

A386699 a(n) = Sum_{k=0..n} 2^(n-k) * binomial(5*n,k).

Original entry on oeis.org

1, 7, 69, 733, 8061, 90462, 1028871, 11814376, 136643085, 1589311381, 18569375114, 217773347502, 2561944357311, 30219704365104, 357278540928168, 4232449819704768, 50227362114232109, 596988743410929087, 7105534815529752831, 84678089652554263155, 1010268312800732117946
Offset: 0

Views

Author

Seiichi Manyama, Jul 30 2025

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(243/16)^n - Binomial[5*n, n]*(-1 + Hypergeometric2F1[1, -4*n, 1 + n, -1/2]), {n,0,25}] (* Vaclav Kotesovec, Jul 30 2025 *)
  • PARI
    a(n) = sum(k=0, n, 2^(n-k)*binomial(5*n, k));

Formula

a(n) = [x^n] 1/((1-3*x) * (1-x)^(4*n)).
a(n) = Sum_{k=0..n} 3^(n-k) * binomial(4*n+k-1,k).
From Vaclav Kotesovec, Jul 30 2025: (Start)
Recurrence: 128*n*(2*n - 1)*(4*n - 3)*(4*n - 1)*(3052*n^4 - 15114*n^3 + 26432*n^2 - 18693*n + 4131)*a(n) = 8*(42807352*n^8 - 285737492*n^7 + 758983420*n^6 - 1002945218*n^5 + 644348866*n^4 - 111879380*n^3 - 84004497*n^2 + 44187381*n - 5806080)*a(n-1) - 1215*(5*n - 9)*(5*n - 8)*(5*n - 7)*(5*n - 6)*(3052*n^4 - 2906*n^3 - 598*n^2 + 1037*n - 192)*a(n-2).
a(n) ~ 5^(5*n + 1/2) / (sqrt(Pi*n) * 2^(8*n + 1/2)). (End)
G.f.: g/((3-2*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 13 2025
a(n) = Sum_{k=0..n} 3^k * (-2)^(n-k) * binomial(5*n,k) * binomial(5*n-k-1,n-k). - Seiichi Manyama, Aug 15 2025
G.f.: 1/(1 - x*g^4*(15-8*g)) where g = 1+x*g^5 is the g.f. of A002294. - Seiichi Manyama, Aug 17 2025

A206290 G.f.: Sum_{n>=0} Product_{k=1..n} Series_Reversion( x/(1 + x^k) ).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 17, 29, 44, 77, 114, 218, 330, 617, 987, 1913, 2968, 6068, 9500, 19263, 31399, 64268, 101702, 218891, 348559, 735823, 1205239, 2576727, 4119884, 9100854, 14588992, 31841260, 52163378, 114485092, 183947681, 414704366, 667453931, 1487920000
Offset: 0

Views

Author

Paul D. Hanna, Feb 05 2012

Keywords

Comments

Compare to the g.f. of partition numbers (A000041): Sum_{n>=0} Product_{k=1..n} x/(1 - x^k).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 12*x^6 + 17*x^7 +...
such that, by definition,
A(x) = 1 + G_1(x) + G_1(x)*G_2(x) + G_1(x)*G_2(x)*G_3(x) + G_1(x)*G_2(x)*G_3(x)*G_4(x) +...
where G_n( x/(1 + x^n) ) = x.
The first few expansions of G_n(x) begin:
G_1(x) = x + x^2 + x^3 + x^4 + x^5 + x^6 +...+ x^(n+1) +...
G_2(x) = x + x^3 + 2*x^5 + 5*x^7 + 14*x^9 +...+ A000108(n)*x^(2*n+1) +...
G_3(x) = x + x^4 + 3*x^7 + 12*x^10 + 55*x^13 +...+ A001764(n)*x^(3*n+1) +...
G_4(x) = x + x^5 + 4*x^9 + 22*x^13 + 140*x^17 +...+ A002293(n)*x^(4*n+1) +...
G_5(x) = x + x^6 + 5*x^11 + 35*x^16 + 285*x^21 +...+ A002294(n)*x^(5*n+1) +...
G_6(x) = x + x^7 + 6*x^13 + 51*x^19 + 506*x^25 +...+ A002295(n)*x^(6*n+1) +...
G_7(x) = x + x^8 + 7*x^15 + 70*x^22 + 819*x^29 +...+ A002296(n)*x^(7*n+1) +...
Note that G_n(x) = x + x*G_n(x)^n.
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0,n,prod(k=1,m,serreverse(x/(1+x^k+x*O(x^n))))),n)}
    for(n=0,45,print1(a(n),", "))

Formula

G.f.: Sum_{n>=0} Product_{k=1..n} G_k(x), where G_n(x) is defined by:
(1) G_n(x) = Series_Reversion( x/(1 + x^n) ),
(2) G_n(x) = x + x*G_n(x)^n,
(3) G_n(x) = Sum_{k>=0} binomial(n*k+1, k) * x^(n*k+1) / (n*k+1).

A235534 a(n) = binomial(6*n, 2*n) / (4*n + 1).

Original entry on oeis.org

1, 3, 55, 1428, 43263, 1430715, 50067108, 1822766520, 68328754959, 2619631042665, 102240109897695, 4048514844039120, 162250238001816900, 6568517413771094628, 268225186597703313816, 11034966795189838872624, 456949965738717944767791
Offset: 0

Views

Author

Bruno Berselli, Jan 12 2014

Keywords

Comments

This is the case l=4, k=2 of binomial((l+k)*n,k*n)/((l*n+1)/gcd(k,l*n+1)), see Theorem 1.1 in Zhi-Wei Sun's paper.
First bisection of A001764.

Crossrefs

Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k: A000108 (l=1, k=1), A001764 (l=2, k=1), A002293 (l=3, k=1), A002294 (l=4, k=1), A002295 (l=5, k=1), A002296 (l=6, k=1), A007556 (l=7, k=1), A062994 (l=8, k=1), A059968 (l=9, k=1), A230388 (l=10, k=1), A048990 (l=2, k=2), this sequence (l=4, k=2), A235536 (l=6, k=2), A187357 (l=3, k=3), A235535 (l=6, k=3).

Programs

  • Magma
    l:=4; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */
  • Mathematica
    Table[Binomial[6 n, 2 n]/(4 n + 1), {n, 0, 20}]

Formula

a(n) = A047749(4*n-2) for n>0.
From Ilya Gutkovskiy, Jun 21 2018: (Start)
G.f.: 4F3(1/6,1/3,2/3,5/6; 1/2,3/4,5/4; 729*x/16).
a(n) ~ 3^(6*n+1/2)/(sqrt(Pi)*2^(4*n+7/2)*n^(3/2)). (End)

A235535 a(n) = binomial(9*n, 3*n) / (6*n + 1).

Original entry on oeis.org

1, 12, 1428, 246675, 50067108, 11124755664, 2619631042665, 642312451217745, 162250238001816900, 41932353590942745504, 11034966795189838872624, 2946924270225408943665279, 796607831560617902288322405, 217550867863011281855594752680
Offset: 0

Views

Author

Bruno Berselli, Jan 12 2014

Keywords

Comments

This is the case l=6, k=3 of binomial((l+k)*n,k*n)/((l*n+1)/gcd(k,l*n+1)), see Theorem 1.1 in Zhi-Wei Sun's paper.
Also, the sequence follows A002296 and A235536, namely binomial(7*n,n)/(6*n+1) and binomial(8*n,2*n)/(6*n+1); naturally, even binomial(10*n,4*n)/(6*n+1) is always integer.

Crossrefs

Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k: A000108 (l=1, k=1), A001764 (l=2, k=1), A002293 (l=3, k=1), A002294 (l=4, k=1), A002295 (l=5, k=1), A002296 (l=6, k=1), A007556 (l=7, k=1), A062994 (l=8, k=1), A059968 (l=9, k=1), A230388 (l=10, k=1), A048990 (l=2, k=2), A235534 (l=4, k=2), A235536 (l=6, k=2), A187357 (l=3, k=3), this sequence (l=6, k=3).

Programs

  • Magma
    l:=6; k:=3; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* here l is divisible by all the prime factors of k */
  • Maple
    seq(binomial(9*n,3*n)/(6*n+1), n=0..30); # Robert Israel, Feb 15 2021
  • Mathematica
    Table[Binomial[9 n, 3 n]/(6 n + 1), {n, 0, 20}]

Formula

a(n) = A001764(3*n) = A047749(6*n).
From Ilya Gutkovskiy, Jun 21 2018: (Start)
G.f.: 6F5(1/9,2/9,4/9,5/9,7/9,8/9; 1/3,1/2,2/3,5/6,7/6; 19683*x/64).
a(n) ~ 3^(9*n-1)/(sqrt(Pi)*4^(3*n+1)*n^(3/2)). (End)
D-finite with recurrence 8*(6*n + 5)*(2*n + 1)*(n + 1)*(3*n + 2)*(3*n + 1)*(6*n + 7)*a(n + 1) = 3*(9*n + 8)*(9*n + 7)*(9*n + 5)*(9*n + 4)*(9*n + 2)*(9*n + 1)*a(n). - Robert Israel, Feb 15 2021

A337292 a(n) = 4*binomial(5*n,n)/(5*n-1).

Original entry on oeis.org

5, 20, 130, 1020, 8855, 81900, 791120, 7887660, 80560285, 838553320, 8863227100, 94871786100, 1026317094705, 11203116342560, 123243929011680, 1364973221797900, 15207477517956825, 170321264840835900, 1916512328325665070, 21655893753689280120
Offset: 1

Views

Author

Lucas A. Brown, Aug 21 2020

Keywords

Comments

a(n) is the number of lattice paths from (0,0) to (4n,n) using only the steps (1,0) and (0,1) and whose only lattice points on the line y = x/4 are the path's endpoints.

Crossrefs

Programs

  • Mathematica
    Array[4 Binomial[5 #, #]/(5 # - 1) &, 20] (* Michael De Vlieger, Aug 21 2020 *)
  • PARI
    a(n) = {4*binomial(5*n,n)/(5*n-1)} \\ Andrew Howroyd, Aug 21 2020

Formula

a(n) = 5*A118971(n-1).
G.f.: 5*x*F(x)^4 where F(x) = 1 + x*F(x)^5 is the g.f. of A002294.
D-finite with recurrence 8*n*(4*n-3)*(2*n-1)*(4*n-1)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-6)*a(n-1)=0., a(0)=1. - R. J. Mathar, Jan 26 2025
G.f.: -4*4F3(-1/5,1/5,2/5,3/5; 1/4,1/2,3/4; 3125*x/256) . - R. J. Mathar, Aug 10 2025

A349582 G.f. A(x) satisfies: A(x) = 1 / (1 - 2*x) + x * (1 - 2*x)^3 * A(x)^5.

Original entry on oeis.org

1, 3, 13, 85, 733, 7292, 78267, 880250, 10226237, 121713373, 1476272394, 18180126906, 226704989103, 2856790765238, 36321840773980, 465362291912648, 6002272018481901, 77873186277771107, 1015583616140910999, 13306207249869273003, 175064043975233981626
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 22 2021

Keywords

Comments

Second binomial transform of A002294.

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = 1/(1 - 2 x) + x (1 - 2 x)^3 A[x]^5 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    Table[Sum[Binomial[n, k] Binomial[5 k, k] 2^(n - k)/(4 k + 1), {k, 0, n}], {n, 0, 20}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)*binomial(5*k,k)*2^(n-k)/(4*k+1)); \\ Michel Marcus, Nov 23 2021

Formula

a(n) = Sum_{k=0..n} binomial(n,k) * binomial(5*k,k) * 2^(n-k) / (4*k+1).
a(n) = 2^n*F([1/5, 2/5, 3/5, 4/5, -n], [1/2, 3/4, 1, 5/4], -5^5/2^9), where F is the generalized hypergeometric function. - Stefano Spezia, Nov 22 2021
a(n) ~ 3637^(n + 3/2) / (78125 * sqrt(Pi) * n^(3/2) * 2^(8*n + 7/2)). - Vaclav Kotesovec, Nov 26 2021

A366037 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^5 / (1 - 5 * A(x)).

Original entry on oeis.org

0, 1, 10, 160, 3110, 67155, 1548526, 37346040, 930513870, 23765376580, 618871054120, 16370119905880, 438628647940730, 11880264846822610, 324739360804852980, 8946782070689651280, 248184394985913218910, 6926162613387923126700, 194320992885495965332600, 5477763483026946993808960, 155070883903415687652796120
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 26 2023

Keywords

Comments

Reversion of g.f. for 4-dimensional figurate numbers A002419 (with signs).

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^5/(1 - 5 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    CoefficientList[InverseSeries[Series[x (1 - 5 x)/(1 + x)^5, {x, 0, 20}], x], x]	
    Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[5 n, n - k - 1] 5^k, {k, 0, n - 1}], {n, 1, 20}]]

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(5*n,n-k-1) * 5^k for n > 0.
a(n) ~ sqrt((5168 - 869*sqrt(34)) / (17*Pi)) * (22 - sqrt(34))^(5*n) / (2 * n^(3/2) * 3^(3*n + 3/2) * 5^(4*n + 1) * (11*sqrt(34) - 62)^n). - Vaclav Kotesovec, Sep 27 2023

A377526 E.g.f. satisfies A(x) = 1 + x*exp(x)*A(x)^5.

Original entry on oeis.org

1, 1, 12, 273, 9604, 460105, 27966126, 2062219117, 178897527768, 17853102321489, 2014988044093210, 253792946798597701, 35290880970687039732, 5370055269772474994713, 887591963820839894529654, 158357028389450319651183165, 30332317748593431632078480176, 6208425034878692992471996557217
Offset: 0

Views

Author

Seiichi Manyama, Oct 30 2024

Keywords

Comments

In general, for k > 1, if e.g.f. satisfies A(x) = 1 + x*exp(x)*A(x)^k, then a(n) ~ sqrt(k*(1 + LambertW((k-1)^(k-1)/k^k))) * n^(n-1) / ((k-1)^(3/2) * exp(n) * LambertW((k-1)^(k-1)/k^k)^n). - Vaclav Kotesovec, Nov 11 2024

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, k^(n-k)*binomial(5*k, k)/((4*k+1)*(n-k)!));

Formula

a(n) = n! * Sum_{k=0..n} k^(n-k) * binomial(5*k,k)/( (4*k+1)*(n-k)! ) = n! * Sum_{k=0..n} k^(n-k) * A002294(k)/(n-k)!.
a(n) ~ sqrt(5*(1 + LambertW(256/3125))) * n^(n-1) / (8 * exp(n) * LambertW(256/3125)^n). - Vaclav Kotesovec, Nov 11 2024

A378920 G.f. A(x) satisfies A(x) = 1 + x*A(x)^6/(1 + x*A(x)^2).

Original entry on oeis.org

1, 1, 5, 38, 339, 3308, 34191, 367844, 4076112, 46204209, 533239820, 6244542391, 74016115926, 886276231388, 10704869669941, 130271156244371, 1595708949486866, 19658780721376791, 243429900033986385, 3028086095940468087, 37821457123957529163, 474145963420441744445
Offset: 0

Views

Author

Seiichi Manyama, Dec 11 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=1, s=-1, t=6, u=2) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = 1/(1 - x*A(x)^5/(1 + x*A(x)^2)).
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).

A235536 a(n) = binomial(8*n, 2*n) / (6*n + 1).

Original entry on oeis.org

1, 4, 140, 7084, 420732, 27343888, 1882933364, 134993766600, 9969937491420, 753310723010608, 57956002331347120, 4524678117939182220, 357557785658996609700, 28545588568201512137904, 2298872717007844035521848, 186533392975795702301759056
Offset: 0

Views

Author

Bruno Berselli, Jan 12 2014

Keywords

Comments

This is the case l=6, k=2 of binomial((l+k)*n,k*n)/((l*n+1)/gcd(k,l*n+1)), see Theorem 1.1 in Zhi-Wei Sun's paper.
First bisection of A002293.
Also, the sequence is between A002296 and A235535.

Crossrefs

Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k: A000108 (l=1, k=1), A001764 (l=2, k=1), A002293 (l=3, k=1), A002294 (l=4, k=1), A002295 (l=5, k=1), A002296 (l=6, k=1), A007556 (l=7, k=1), A062994 (l=8, k=1), A059968 (l=9, k=1), A230388 (l=10, k=1), A048990 (l=2, k=2), A235534 (l=4, k=2), this sequence (l=6, k=2), A187357 (l=3, k=3), A235535 (l=6, k=3).

Programs

  • Magma
    l:=6; k:=2; [Binomial((l+k)*n,k*n)/(l*n+1): n in [0..20]]; /* where l is divisible by all the prime factors of k */
  • Mathematica
    Table[Binomial[8 n, 2 n]/(6 n + 1), {n, 0, 20}]

Formula

a(n) = A124753(6*n).
From Ilya Gutkovskiy, Jun 21 2018: (Start)
G.f.: 6F5(1/8,1/4,3/8,5/8,3/4,7/8; 1/3,1/2,2/3,5/6,7/6; 65536*x/729).
a(n) ~ 2^(16*n-1)/(sqrt(Pi)*3^(6*n+3/2)*n^(3/2)). (End)
Previous Showing 91-100 of 130 results. Next