A349312
G.f. A(x) satisfies: A(x) = (1 + x * A(x)^6) / (1 - x).
Original entry on oeis.org
1, 2, 14, 158, 2106, 30762, 476406, 7683926, 127692530, 2171184146, 37592376734, 660522703886, 11747865153962, 211093333172282, 3826315983647366, 69880933123237958, 1284661783610775010, 23753502514840942882, 441458929706855144494, 8242097867816771820926
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = (1 + x A[x]^6)/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 5 k, 6 k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 19}]
A349333
G.f. A(x) satisfies A(x) = 1 + x * A(x)^6 / (1 - x).
Original entry on oeis.org
1, 1, 7, 64, 678, 7836, 95838, 1219527, 15979551, 214151601, 2921712145, 40444378948, 566634504256, 8019501351103, 114484746457075, 1646614155398872, 23837794992712680, 347081039681365623, 5079306905986689309, 74670702678690897079, 1102218694940440851877
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^6/(1-x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
-
nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^6/(1 - x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n - 1, k - 1] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 20}]
-
{a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0);
A[#A] = 1 + sum(k=1, m-1, (polcoeff(Ser(A)^6, k)) )); A[n+1]}
for(n=0, 30, print1(a(n), ", ")) \\ Vaclav Kotesovec, Nov 23 2024, after Paul D. Hanna
A349362
G.f. A(x) satisfies: A(x) = 1 + x * A(x)^6 / (1 + x).
Original entry on oeis.org
1, 1, 5, 40, 370, 3740, 40006, 445231, 5102165, 59799505, 713496815, 8637432580, 105826926716, 1309793896431, 16351672606365, 205665994855320, 2603696877136060, 33151784577226295, 424258396639960591, 5454120586840761631, 70402732493668027775
Offset: 0
-
a:= n-> coeff(series(RootOf(1+x*A^6/(1+x)-A, A), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Nov 15 2021
-
nmax = 20; A[] = 0; Do[A[x] = 1 + x A[x]^6/(1 + x) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[(-1)^(n - k) Binomial[n - 1, k - 1] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 20}]
A079679
a(n) = a(n,m) = Sum_{k=0..n} binomial(m*k,k)*binomial(m*(n-k),n-k) for m=6.
Original entry on oeis.org
1, 12, 168, 2424, 35400, 520236, 7674144, 113482584, 1681028136, 24932533800, 370144424376, 5499182587416, 81748907485248, 1215834858032820, 18090048027643200, 269246037610828656, 4008495234662771688, 59692297399976544120, 889090275714779739120, 13245013739104555683600
Offset: 0
- Seiichi Manyama, Table of n, a(n) for n = 0..851
- D. Merlini, R. Sprugnoli and M. C. Verri, The tennis ball problem, J. Combin. Theory, A 99 (2002), 307-344.
- Rui Duarte and António Guedes de Oliveira, Short note on the convolution of binomial coefficients, arXiv:1302.2100 [math.CO], 2013.
-
a(n) = sum(k=0,n,5^(n-k)*binomial(6*n+1,k));
vector(30, n, a(n-1)) \\ Altug Alkan, Sep 30 2015
A346648
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(6*k,k) / (5*k + 1).
Original entry on oeis.org
1, 2, 9, 73, 751, 8587, 104425, 1323952, 17303503, 231455104, 3153167249, 43597546197, 610232050453, 8629733401556, 123114479858631, 1769728635257503, 25607523627970183, 372688563309335806, 5451995469296025115, 80122698147986922194, 1182341393088427774071
Offset: 0
-
Table[Sum[Binomial[n, k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 20}]
nmax = 20; A[] = 0; Do[A[x] = 1/(1 - x) + x (1 - x)^4 A[x]^6 + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
nmax = 20; CoefficientList[Series[Sum[(Binomial[6 k, k]/(5 k + 1)) x^k/(1 - x)^(k + 1), {k, 0, nmax}], {x, 0, nmax}], x]
Table[HypergeometricPFQ[{1/6, 1/3, 1/2, 2/3, 5/6, -n}, {2/5, 3/5, 4/5, 1, 6/5}, -46656/3125], {n, 0, 20}]
-
a(n) = sum(k=0, n, binomial(n,k)*binomial(6*k,k)/(5*k + 1)); \\ Michel Marcus, Jul 26 2021
A364748
G.f. A(x) satisfies A(x) = 1 + x*A(x)^5 / (1 - x*A(x)).
Original entry on oeis.org
1, 1, 6, 47, 424, 4159, 43097, 464197, 5145475, 58313310, 672598269, 7869856070, 93183973405, 1114471042413, 13443614108307, 163372291277764, 1998239045199623, 24580340878055298, 303893356012560280, 3774099648814193998, 47061518776483143441
Offset: 0
-
a(n) = if(n==0, 1, sum(k=0, n-1, binomial(n, k)*binomial(5*n-4*k, n-1-k))/n);
-
a(n, r=1, s=1, t=5, u=1) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(n+(s-1)*k-1, n-k)/(t*k+u*(n-k)+r)); \\ Seiichi Manyama, Dec 05 2024
A349291
G.f. A(x) satisfies A(x) = 1 / ((1 - x) * (1 - x * A(x)^5)).
Original entry on oeis.org
1, 2, 13, 139, 1775, 24886, 370099, 5733304, 91518691, 1494815215, 24862931821, 419674102147, 7170713484877, 123783319369420, 2155542171446485, 37820343323942566, 667957770644685811, 11865421405897931581, 211856917750711562695, 3800040255017879663415
Offset: 0
-
nmax = 19; A[] = 0; Do[A[x] = 1/((1 - x) (1 - x A[x]^5)) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Table[Sum[Binomial[n + 4 k, 5 k] Binomial[6 k, k]/(5 k + 1), {k, 0, n}], {n, 0, 19}]
A233743
a(n) = 7*binomial(6*n + 7, n)/(6*n + 7).
Original entry on oeis.org
1, 7, 63, 644, 7105, 82467, 992446, 12271512, 154962990, 1990038435, 25909892008, 341225775072, 4537563627415, 60842326873230, 821692714673340, 11167153485624304, 152610018401940330, 2095863415900961490, 28910564819681953485, 400379714692751795820
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007.
- J-C. Aval, Multivariate Fuss-Catalan Numbers, Discrete Math., 308 (2008), 4660-4669.
- Thomas A. Dowling, Catalan Numbers Chapter 7
- Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
- Wikipedia, Fuss-Catalan number
-
[7*Binomial(6*n+7, n)/(6*n+7): n in [0..30]]; // Vincenzo Librandi, Dec 16 2013
-
Table[7 Binomial[6 n + 7, n]/(6 n + 7), {n, 0, 40}] (* Vincenzo Librandi, Dec 16 2013 *)
-
a(n) = 7*binomial(6*n+7,n)/(6*n+7);
-
{a(n)=local(B=1); for(i=0, n, B=(1+x*B^(6/7))^7+x*O(x^n)); polcoeff(B, n)}
A251667
E.g.f.: exp(7*x*G(x)^6) / G(x) where G(x) = 1 + x*G(x)^7 is the g.f. of A002296.
Original entry on oeis.org
1, 6, 107, 3508, 171741, 11280842, 933014767, 93212094024, 10925496633401, 1470493880790382, 223555405538724819, 37892802280129883324, 7086076189702624109653, 1449303152891376476830962, 321848482510755456019058519, 77124029495405859198280522768
Offset: 0
E.g.f.: A(x) = 1 + 6*x + 107*x^2/2! + 3508*x^3/3! + 171741*x^4/4! + 11280842*x^5/5! +...
such that A(x) = exp(7*x*G(x)^6) / G(x)
where G(x) = 1 + x*G(x)^7 is the g.f. of A002296:
G(x) = 1 + x + 7*x^2 + 70*x^3 + 819*x^4 + 10472*x^5 + 141778*x^6 +...
-
Table[Sum[7^k * n!/k! * Binomial[7*n-k-2,n-k] * (6*k-1)/(6*n-1),{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, Dec 07 2014 *)
-
{a(n)=local(G=1); for(i=0, n, G=1+x*G^7 +x*O(x^n)); n!*polcoeff(exp(7*x*G^6)/G, n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = sum(k=0, n, 7^k * n!/k! * binomial(7*n-k-2,n-k) * (6*k-1)/(6*n-1) )}
for(n=0, 20, print1(a(n), ", "))
A365184
G.f. satisfies A(x) = 1 + x*A(x)^5*(1 + x).
Original entry on oeis.org
1, 1, 6, 45, 395, 3775, 38146, 400826, 4335455, 47951065, 539823620, 6165377836, 71261299056, 831990025420, 9797505040130, 116235417614900, 1387958781395535, 16668362761081560, 201190667288072005, 2439418470063468505, 29698136499328762445
Offset: 0
-
a(n) = sum(k=0, n, binomial(k, n-k)*binomial(5*k, k)/(4*k+1));
Comments