cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A140406 a(n) = binomial(n+6, 6)*8^n.

Original entry on oeis.org

1, 56, 1792, 43008, 860160, 15138816, 242221056, 3598712832, 50381979648, 671759728640, 8598524526592, 106309030510592, 1275708366127104, 14915974742409216, 170468282770391040, 1909244767028379648, 21001692437312176128, 227312435792084729856
Offset: 0

Views

Author

Zerinvary Lajos, Jun 16 2008

Keywords

Comments

With a different offset, number of n-permutations (n >= 6) of 9 objects: p, r, s, t, u, v, z, x, y with repetition allowed, containing exactly six (6) u's.
If n=6 then a(0)=1.
Example: a(1)=56 because we have
uuuuuup, uuuuupu, uuuupuu, uuupuuu, uupuuuu, upuuuuu, puuuuuu,
uuuuuur, uuuuuru, uuuuruu, uuuruuu, uuruuuu, uruuuuu, ruuuuuu,
uuuuuus, uuuuusu, uuuusuu, uuusuuu, uusuuuu, usuuuuu, suuuuuu,
uuuuuut, uuuuutu, uuuutuu, uuutuuu, uutuuuu, utuuuuu, tuuuuuu,
uuuuuuv, uuuuuvu, uuuuvuu, uuuvuuu, uuvuuuu, uvuuuuu, vuuuuuu,
uuuuuuz, uuuuuzu, uuuuzuu, uuuzuuu, uuzuuuu, uzuuuuu, zuuuuuu,
uuuuuux, uuuuuxu, uuuuxuu, uuuxuuu, uuxuuuu, uxuuuuu, xuuuuuu,
uuuuuuy, uuuuuyu, uuuuyuu, uuuyuuu, uuyuuuu, uyuuuuu, yuuuuuu.

Crossrefs

Programs

  • Magma
    [8^n* Binomial(n+6, 6): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
    
  • Maple
    seq(binomial(n+6,6)*8^n,n=0..17);
  • Mathematica
    Table[Binomial[n+6,6]8^n,{n,0,20}] (* or *) LinearRecurrence[ {56,-1344,17920,-143360,688128,-1835008,2097152},{1,56,1792,43008,860160,15138816,242221056},20] (* Harvey P. Dale, Dec 15 2011 *)
  • PARI
    a(n)=binomial(n+6,6)<<(3*n) \\ Charles R Greathouse IV, Dec 15 2011

Formula

G.f.: 1/(1-8*x)^7. - Zerinvary Lajos, Aug 06 2008
a(n) = 56*a(n-1) - 1344*a(n-2) + 17920*a(n-3) - 143360*a(n-4) + 688128*a(n-5) - 1835008*a(n-6) + 2097152*a(n-7). - Harvey P. Dale, Dec 15 2011
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 538628/5 - 806736*log(8/7).
Sum_{n>=0} (-1)^n/a(n) = 2834352*log(9/8) - 1669188/5. (End)

A162007 Third left hand column of the EG1 triangle A162005.

Original entry on oeis.org

1, 270, 36096, 4766048, 704357760, 120536980224, 24060789342208, 5590122715250688, 1503080384197754880, 464520829174515630080, 163839204411117787938816, 65500849343294249018327040
Offset: 3

Views

Author

Johannes W. Meijer, Jun 27 2009

Keywords

Crossrefs

Third left hand column of the EG1 triangle A162005.
Other left hand columns are A000182 and A162006.
Related to A094665, A083061 and A156919.
A000079, A036289 and A100381 appear in the a(n, 3) formula.
A001789, A003472, A054849, A002409, A054851, A140325 and A140354 (scaled by 2^(m-1)) appear one by one in the a(n, m) formulas for m= 4 and higher .

Programs

  • Maple
    nmax := 14; mmax := nmax: imax := nmax: T1(0, x) := 1: T1(0, x+1) := 1: for i from 1 to imax do T1(i, x) := expand((2*x+1)*(x+1)*T1(i-1, x+1) - 2*x^2*T1(i-1, x)): dx := degree(T1(i, x)): for k from 0 to dx do c(k) := coeff(T1(i, x), x, k) od: T1(i, x+1) := sum(c(j1)*(x+1)^(j1), j1 = 0..dx): od: for i from 0 to imax do for j from 0 to i do A083061(i, j) := coeff(T1(i, x), x, j) od: od: for n from 0 to nmax do for k from 0 to n do A094665(n+1, k+1) := A083061(n, k) od: od: A094665(0, 0) := 1: for n from 1 to nmax do A094665(n, 0) := 0 od: for m from 1 to mmax do A156919(0, m) := 0 end do: for n from 0 to nmax do A156919(n, 0) := 2^n end do: for n from 1 to nmax do for m from 1 to mmax do A156919(n, m) := (2*m+2)*A156919(n-1, m) + (2*n-2*m+1) * A156919(n-1, m-1) end do end do: m:=3; for n from m to nmax do a(n, m) := sum((-1)^(m-p1-1)*sum(2^(n-q-1)*binomial(n-q-1, m-p1-1) * A094665(n-1, q) * A156919(q, p1), q=1..n-m+p1), p1=0..m-1) od: seq(a(n, m), n = m..nmax);
    # Maple program edited by Johannes W. Meijer, Sep 25 2012

Formula

a(n) = sum((-1)^(m-p-1)*sum(2^(n-q-1)*binomial(n-q-1,m-p-1)*A094665(n-1,q)* A156919(q,p),q=1..n-m+p), p=0..m-1) with m = 3.

A130812 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 6-subsets of X containing none of X_i, (i=1,...n).

Original entry on oeis.org

64, 448, 1792, 5376, 13440, 29568, 59136, 109824, 192192, 320320, 512512, 792064, 1188096, 1736448, 2480640, 3472896, 4775232, 6460608, 8614144, 11334400, 14734720, 18944640, 24111360, 30401280, 38001600, 47121984, 57996288, 70884352, 86073856, 103882240
Offset: 6

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=6) of 3 objects u,v,z, with repetition allowed, containing n-6 u's. Example: if n=6 then n-6 =(0) zero u, a(1)=64. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 5-dimensional elements in an n-cross polytope where n>=6. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Magma
    [Binomial(2*n,6)+Binomial(n,2)*Binomial(2*n-4,2)- n*Binomial(2*n-2,4)-Binomial(n,3): n in [6..40]]; // Vincenzo Librandi, Jul 09 2015
  • Maple
    a:=n->binomial(2*n,6)+binomial(n,2)*binomial(2*n-4,2)-n*binomial(2*n-2,4)-binomial(n,3);
    seq(binomial(n,n-6)*2^6,n=6..32); # Zerinvary Lajos, Dec 07 2007
    seq(binomial(n+5, 6)*2^6, n=1..22); # Zerinvary Lajos, Aug 05 2008
  • Mathematica
    CoefficientList[Series[64/(1-x)^7,{x,0,30}],x] (* Vincenzo Librandi, Mar 21 2012 *)

Formula

a(n) = binomial(2*n,6) + binomial(n,2)*binomial(2*n-4,2) - n*binomial(2*n-2,4) - binomial(n,3).
a(n) = C(n,n-6)*2^6, n>=6. - Zerinvary Lajos, Dec 07 2007
G.f.: 64*x^6/(1-x)^7. - Colin Barker, Mar 20 2012

A172242 Number of 10-D hypercubes in an n-dimensional hypercube.

Original entry on oeis.org

1, 22, 264, 2288, 16016, 96096, 512512, 2489344, 11202048, 47297536, 189190144, 722362368, 2648662016, 9372188672, 32133218304, 107110727680, 348109864960, 1105760747520, 3440144547840, 10501493882880, 31504481648640
Offset: 10

Views

Author

Zerinvary Lajos, Jan 29 2010

Keywords

Comments

With a different offset, number of n-permutations (n>=8) of 3 objects: u, v, z with repetition allowed, containing exactly ten (10) u's.

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n + 10, 10]*2^n, {n, 0, 22}]
  • Sage
    [lucas_number2(n, 2, 0)*binomial(n,10)/2^10 for n in range(10, 31)] # Zerinvary Lajos, Feb 05 2010

Formula

a(n) = A038207(n,10).
a(n) = binomial(n,10)*2^(n-10). [Corrected by R. J. Mathar, Feb 21 2010]
G.f.: -x^10/(2*x-1)^11. - Colin Barker, Nov 11 2012
a(n) = Sum_{i=10..n} binomial(i,10)*binomial(n,i). Example: for n=15, a(15) = 1*3003 + 11*1365 + 66*455 + 286*105 + 1001*15 + 3003*1 = 96096. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=10} 1/a(n) = 1879/126 - 20*log(2).
Sum_{n>=10} (-1)^n/a(n) = 393660*log(3/2) - 20111419/126. (End)

A130811 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 5-subsets of X containing none of X_i, (i=1,...n).

Original entry on oeis.org

32, 192, 672, 1792, 4032, 8064, 14784, 25344, 41184, 64064, 96096, 139776, 198016, 274176, 372096, 496128, 651168, 842688, 1076768, 1360128, 1700160, 2104960, 2583360, 3144960, 3800160, 4560192, 5437152, 6444032, 7594752, 8904192
Offset: 5

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=5) of 3 objects u,v,z, with repetition allowed, containing n-5 u's. Example: if n=5 then n-5 =(0) zero u, a(1)=32. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 4-dimensional elements in an n-cross polytope where n>=5. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Magma
    [Binomial(n,n-5)*2^5: n in [5..40]]; // Vincenzo Librandi, Jul 09 2015
  • Maple
    a:=n->binomial(2*n,5)+(2*n-4)*binomial(n,2)-n*binomial(2*n-2,3)
    seq(binomial(n,n-5)*2^5,n=5..34); # Zerinvary Lajos, Dec 07 2007
    seq(binomial(n+4, 5)*2^5, n=1..22); # Zerinvary Lajos, Aug 05 2008
  • Mathematica
    Table[Binomial[2 n, 5] + (2 n - 4) Binomial[n, 2] - n Binomial[2 n - 2, 3], {n, 5, 40}] (* Vincenzo Librandi, Jul 09 2015 *)

Formula

a(n) = binomial(2*n,5) + (2*n-4)*binomial(n,2) - n*binomial(2*n-2,3).
a(n) = C(n,n-5)*2^5, for n>=5. - Zerinvary Lajos, Dec 07 2007
G.f.: 32*x^5/(1-x)^6. - Colin Barker, Apr 14 2012

A213348 6-quantum transitions in systems of N >= 6 spin 1/2 particles, in columns by combination indices.

Original entry on oeis.org

1, 14, 112, 8, 672, 144, 3360, 1440, 45, 14784, 10560, 990, 59136, 63360, 11880, 220, 219648, 329472, 102960, 5720, 768768, 1537536, 720720, 80080, 1001, 2562560, 6589440, 4324320, 800800, 30030, 8200192, 26357760, 23063040
Offset: 6

Views

Author

Stanislav Sykora, Jun 13 2012

Keywords

Comments

For a general discussion, please see A213343.
This a(n) is for sextuple-quantum transitions (q = 6).
It lists the flattened triangle T(6;N,k) with rows N = 6,7,... and columns k = 0..floor((N-6)/2).

Examples

			Starting rows of the triangle:
   N | k = 0, 1, ..., floor((N-6)/2)
   6 |    1
   7 |   14
   8 |  112    8
   9 |  672  144
  10 | 3360 1440 45
		

References

Crossrefs

Cf. A051288 (q=0), A213343 to A213347 (q=1 to 5), A213349 to A213352 (q=7 to 10).
Cf. A002409 (first column, with offset 6), A004312 (row sums).

Programs

  • Mathematica
    With[{q = 6}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *)
  • PARI
    See A213343; set thisq = 6

Formula

Set q = 6 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k).

A140405 a(n) = binomial(n+6, 6)*5^n.

Original entry on oeis.org

1, 35, 700, 10500, 131250, 1443750, 14437500, 134062500, 1173046875, 9775390625, 78203125000, 604296875000, 4532226562500, 33120117187500, 236572265625000, 1656005859375000, 11385040283203125, 77016448974609375, 513442993164062500, 3377914428710937500
Offset: 0

Views

Author

Zerinvary Lajos, Jun 16 2008

Keywords

Comments

With a different offset, number of n-permutations (n>=6) of 6 objects: t, u, v, z, x, y with repetition allowed, containing exactly six (6) u's.
If n=6 then a(0)=1.
Example: a(1)=35 because we have
uuuuuut, uuuuutu, uuuutuu, uuutuuu, uutuuuu, utuuuuu, tuuuuuu,
uuuuuuv, uuuuuvu, uuuuvuu, uuuvuuu, uuvuuuu, uvuuuuu, vuuuuuu,
uuuuuuz, uuuuuzu, uuuuzuu, uuuzuuu, uuzuuuu, uzuuuuu, zuuuuuu,
uuuuuux, uuuuuxu, uuuuxuu, uuuxuuu, uuxuuuu, uxuuuuu, xuuuuuu,
uuuuuuy, uuuuuyu, uuuuyuu, uuuyuuu, uuyuuuu, uyuuuuu, yuuuuuu.

Crossrefs

Programs

  • Maple
    seq(binomial(n+6,6)*5^n,n=0..18);
  • Mathematica
    Table[Binomial[n+6,6]5^n,{n,0,20}] (* Harvey P. Dale, Dec 03 2017 *)

Formula

G.f.: 1/(1-5*x)^7. - Zerinvary Lajos, Aug 06 2008
From Amiram Eldar, Aug 29 2022: (Start)
Sum_{n>=0} 1/a(n) = 6856 - 30720*log(5/4).
Sum_{n>=0} (-1)^n/a(n) = 233280*log(6/5) - 42531. (End)

A372868 Irregular triangle read by rows: T(n,k) is the number of flattened Catalan words of length n with exactly k runs of weak ascents, with 1 <= k <= ceiling(n/2).

Original entry on oeis.org

1, 2, 4, 1, 8, 6, 16, 24, 1, 32, 80, 10, 64, 240, 60, 1, 128, 672, 280, 14, 256, 1792, 1120, 112, 1, 512, 4608, 4032, 672, 18, 1024, 11520, 13440, 3360, 180, 1, 2048, 28160, 42240, 14784, 1320, 22, 4096, 67584, 126720, 59136, 7920, 264, 1, 8192, 159744, 366080, 219648, 41184, 2288, 26
Offset: 1

Views

Author

Stefano Spezia, May 15 2024

Keywords

Comments

With offset 0 for the variable k, T(n,k) is the number of flattened Catalan words of length n with exactly k peaks. In such case, T(4,1) = 6 corresponds to 6 flattened Catalan words of length 4 with 1 peak: 0010, 0100, 0110, 0101, 0120, and 0121. See Baril et al. at page 20.

Examples

			The irregular triangle begins:
    1;
    2;
    4,    1;
    8,    6;
   16,   24,    1;
   32,   80,   10;
   64,  240,   60,   1;
  128,  672,  280,  14;
  256, 1792, 1120, 112, 1;
  ...
T(4,2) = 6 since there are 6 flattened Catalan words of length 4 with 2 runs of weak ascents: 0010, 0100, 0101, 0110, 0120, and 0121.
		

Crossrefs

Cf. A000079, A001788, A002409, A003472, A007051 (row sums), A110654 (row lengths), A140325, A172242.

Programs

  • Mathematica
    T[n_,k_]:=SeriesCoefficient[(1-2x)*x*y/(1-4*x+4*x^2-x^2*y),{x,0,n},{y,0,k}]; Table[T[n,k],{n,14},{k,Ceiling[n/2]}] //Flatten (* or *)
    T[n_,k_]:=2^(n-2k+1)Binomial[n-1,2k-2]; Table[T[n,k],{n,14},{k,Ceiling[n/2]}]

Formula

G.f.: (1-2*x)*x*y/(1 - 4*x + 4*x^2 - x^2*y).
T(n,k) = 2^(n-2*k+1)*binomial(n-1, 2*k-2).
T(n,1) = A000079(n-1).
T(n,2) = A001788(n-2).
T(n,3) = A003472(n-1).
T(n,4) = A002409(n-7).
T(n,5) = A140325(n-9).
T(n,6) = A172242(n-1).
Sum_{k>=0} T(n,k) = A007051(n-1).

A119886 a(n) = 20*a(n-2) - 64*a(n-4).

Original entry on oeis.org

1, 59, 2416, 6230, 47680, 120824, 798976, 2017760, 12928000, 32622464, 207425536, 523312640, 3321118720, 8378415104, 53147140096, 134076293120, 850391203840, 2145307295744, 13606407110656, 34325263155200, 217703105167360, 549205596176384, 3483252048265216
Offset: 0

Views

Author

Roger L. Bagula, Aug 09 2006

Keywords

Crossrefs

Programs

  • Mathematica
    M = {{0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0}, {1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0}, {1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0}, {0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0}, {0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0}, {0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0}, {1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1}, {1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1}, {0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0}, {0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0}, {0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0}, {0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1}, {0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0}, {0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1}, {0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0}} v[1] = Table[Fibonacci[n], {n, 1, 16}] v[n_] := v[n] = M.v[n - 1] a = Table[Floor[v[n][[1]]], {n, 1, 50}]
    (* Second program: *)
    A = SparseArray[{{1, 8} -> 1, Band[{1, 4}] -> 1, Band[{1, 2}, {3, 4}] -> 1, Band[{5, 6}, {7, 8}] -> 1}, {8, 8}]; M = ArrayFlatten[{{A+Transpose[A], IdentityMatrix[8]}, {IdentityMatrix[8], A+Transpose[A]}}]; v[1] = Array[ Fibonacci, 16]; v[n_] := v[n] = M.v[n-1]; A119886 = Array[v, 50][[All, 1]] (* Jean-François Alcover, Feb 05 2017 *)
    LinearRecurrence[{0,20,0,-64},{1,59,2416,6230,47680},30] (* Harvey P. Dale, Sep 06 2024 *)
  • PARI
    Vec(-(576*x^4-5050*x^3-2396*x^2-59*x-1) / ((2*x-1)*(2*x+1)*(4*x-1)*(4*x+1)) + O(x^30)) \\ Colin Barker, Feb 05 2017

Formula

G.f.: -(576*x^4-5050*x^3-2396*x^2-59*x-1) / ((2*x-1)*(2*x+1)*(4*x-1)*(4*x+1)). - Colin Barker, Nov 17 2012
a(n) = 2^(n-4)*(-3266 + 585*(-2)^n + 258*(-1)^n + 2583*2^n) for n>0. - Colin Barker, Feb 05 2017

Extensions

New name from Joerg Arndt, Feb 05 2017

A130813 If X_1,...,X_n is a partition of a 2n-set X into 2-blocks then a(n) is equal to the number of 7-subsets of X containing none of X_i, (i=1,...n).

Original entry on oeis.org

128, 1024, 4608, 15360, 42240, 101376, 219648, 439296, 823680, 1464320, 2489344, 4073472, 6449664, 9922560, 14883840, 21829632, 31380096, 44301312, 61529600, 84198400, 113667840, 151557120, 199779840, 260582400, 336585600, 430829568
Offset: 7

Views

Author

Milan Janjic, Jul 16 2007

Keywords

Comments

Number of n permutations (n>=7) of 3 objects u,v,z, with repetition allowed, containing n-7 u's. Example: if n=7 then n-7 =(0) zero u, a(1)=128. - Zerinvary Lajos, Aug 05 2008
a(n) is the number of 6-dimensional elements in an n-cross polytope where n>=7. - Patrick J. McNab, Jul 06 2015

Crossrefs

Programs

  • Magma
    [Binomial(n,n-7)*2^7: n in [7..40]]; // Vincenzo Librandi, Jul 09 2015
  • Maple
    a:=n->binomial(2*n,7)+binomial(n,2)*binomial(2*n-4,3)-n*binomial(2*n-2,5)-(2*n-6)*binomial(n,3);
    seq(binomial(n,n-7)*2^7,n=7..32); # Zerinvary Lajos, Dec 07 2007
    seq(binomial(n+6, 7)*2^7, n=1..22); # Zerinvary Lajos, Aug 05 2008
  • Mathematica
    Table[Binomial[n, n - 7] 2^7, {n, 7, 40}] (* Vincenzo Librandi, Jul 09 2015 *)

Formula

a(n) = binomial(2*n,7) + binomial(n,2)*binomial(2*n-4,3) - n*binomial(2*n-2,5) - (2*n-6)*binomial(n,3).
a(n) = C(n,n-7)*2^7, n>=7. - Zerinvary Lajos, Dec 07 2007
G.f.: 128*x^7/(1-x)^8. - Colin Barker, Mar 18 2012
a(n) = 128*A000580(n). a(n+1) = 2*(n+1)*a(n)/(n-6) for n >= 7. - Robert Israel, Jul 08 2015
Previous Showing 11-20 of 20 results.