A140406 a(n) = binomial(n+6, 6)*8^n.
1, 56, 1792, 43008, 860160, 15138816, 242221056, 3598712832, 50381979648, 671759728640, 8598524526592, 106309030510592, 1275708366127104, 14915974742409216, 170468282770391040, 1909244767028379648, 21001692437312176128, 227312435792084729856
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Index entries for linear recurrences with constant coefficients, signature (56,-1344,17920,-143360,688128,-1835008,2097152).
Programs
-
Magma
[8^n* Binomial(n+6, 6): n in [0..20]]; // Vincenzo Librandi, Oct 16 2011
-
Maple
seq(binomial(n+6,6)*8^n,n=0..17);
-
Mathematica
Table[Binomial[n+6,6]8^n,{n,0,20}] (* or *) LinearRecurrence[ {56,-1344,17920,-143360,688128,-1835008,2097152},{1,56,1792,43008,860160,15138816,242221056},20] (* Harvey P. Dale, Dec 15 2011 *)
-
PARI
a(n)=binomial(n+6,6)<<(3*n) \\ Charles R Greathouse IV, Dec 15 2011
Formula
G.f.: 1/(1-8*x)^7. - Zerinvary Lajos, Aug 06 2008
a(n) = 56*a(n-1) - 1344*a(n-2) + 17920*a(n-3) - 143360*a(n-4) + 688128*a(n-5) - 1835008*a(n-6) + 2097152*a(n-7). - Harvey P. Dale, Dec 15 2011
From Amiram Eldar, Aug 28 2022: (Start)
Sum_{n>=0} 1/a(n) = 538628/5 - 806736*log(8/7).
Sum_{n>=0} (-1)^n/a(n) = 2834352*log(9/8) - 1669188/5. (End)
Comments