cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 147 results. Next

A136360 Square roots of the perfect squares in A133459.

Original entry on oeis.org

6, 9, 12, 17, 22, 24, 25, 26, 60, 86, 99, 120, 188, 200, 202, 210, 214, 238, 243, 268, 336, 348, 415, 476, 481, 504, 524, 539, 565, 602, 693, 704, 720, 726, 732, 846, 899, 961, 965, 990, 1026, 1202, 1218, 1221, 1224, 1320, 1551, 1602, 1687, 1716, 1724, 1734
Offset: 1

Views

Author

Alexander Adamchuk, Dec 25 2007

Keywords

Comments

Corresponding squares in A133459 are listed in A136359(n) = a(n)^2.
Note that some numbers in a(n) are also perfect squares: m = k^2 = {9, 25, 961, 17424, ...}. The corresponding numbers k such that a(n) = k^2 are listed in A136361.

Examples

			A133459 begins {2, 7, 12, 19, 24, 36, 41, 46, 58, 76, 80, 81, 93, 115, 127, 132, 144, 150, 166, 197, 201, 202, 214, 236, 252, 271, 289, ...}.
Thus a(1) = sqrt(36) = 6, a(2) = sqrt(81) = 9, a(3) = sqrt(144) = 12, a(4) = sqrt(289) = 17 that are the square roots of the perfect squares in A133459.
		

Crossrefs

Programs

  • Mathematica
    Sqrt[ Select[ Intersection[ Flatten[ Table[ i^2*(i+1)/2 + j^2*(j+1)/2, {i,1,300}, {j,1,i} ] ] ], IntegerQ[ Sqrt[ # ] ] & ] ]

Formula

a(n) = sqrt(A136359(n)).

A136361 Square roots of the perfect squares in A136360; or numbers k such that k^4 is in A133459 = the sums of two nonzero pentagonal pyramidal numbers.

Original entry on oeis.org

3, 5, 31, 132, 1068, 9672, 50664, 145060
Offset: 1

Views

Author

Alexander Adamchuk, Dec 25 2007

Keywords

Comments

Corresponding perfect squares in A136360 are a(n)^2 = {9, 25, 961, 17424, ...}. They correspond to the perfect fourth powers in A133459 = Sums of two nonzero pentagonal pyramidal numbers. a(n)^4 are the terms of A133459: {81, 525, 923521, 303595776, ...}. Note that the first three terms are prime.
a(9) > (5*10^20)^(1/4). - Donovan Johnson, Jun 12 2011

Crossrefs

Extensions

Name corrected and a(5)-a(6) from Donovan Johnson, Nov 20 2010
a(7)-a(8) from Donovan Johnson, Jun 12 2011

A189073 Triangle read by rows: T(n,k) is the number of inversions in k-compositions of n for n >= 3, 2 <= k <= n-1.

Original entry on oeis.org

1, 1, 3, 2, 6, 6, 2, 12, 18, 10, 3, 18, 42, 40, 15, 3, 27, 78, 110, 75, 21, 4, 36, 132, 240, 240, 126, 28, 4, 48, 204, 460, 600, 462, 196, 36, 5, 60, 300, 800, 1290, 1302, 812, 288, 45, 5, 75, 420, 1300, 2490, 3108, 2548, 1332, 405, 55, 6, 90, 570, 2000, 4440, 6594, 6692, 4608, 2070, 550, 66
Offset: 3

Views

Author

N. J. A. Sloane, Apr 16 2011

Keywords

Comments

The Heibach et al. reference has a table for n <= 14.

Examples

			Triangle begins:
1;
1,  3;
2,  6,   6;
2, 12,  18,   10;
3, 18,  42,   40,   15;
3, 27,  78,  110,   75,   21;
4, 36, 132,  240,  240,  126,   28;
4, 48, 204,  460,  600,  462,  196,   36;
5, 60, 300,  800, 1290, 1302,  812,  288,   45;
5, 75, 420, 1300, 2490, 3108, 2548, 1332,  405,  55;
6, 90, 570, 2000, 4440, 6594, 6692, 4608, 2070, 550, 66;
...
T(5,3) = 6 because we have: 3+1+1, 1+3+1, 1+1+3, 2+2+1, 2+1+2, 1+2+2 having 2,1,0,2,1,0 inversions respectively. - _Geoffrey Critzer_, Mar 19 2014
		

Crossrefs

Row sums are A189052. The first column is A004526(n-1). Diagonal is A000217(n-2). Lower diagonal is A002411(n-3). 2nd lower diagonal is A001621(n-4).

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k=2 then floor((n-1)/2)
        elif k>=n then 0
        else T(n-1, k) +k/(k-2) *T(n-1, k-1)
          fi
        end:
    seq(seq(T(n, k), k=2..n-1), n=3..13);  # Alois P. Heinz, Apr 17 2011
  • Mathematica
    T[n_, k_] := T[n, k] = Which[k == 2, Floor[(n-1)/2], k >= n, 0, True, T[n-1, k] + k/(k-2)*T[n-1, k-1]]; Table[Table[T[n, k], {k, 2, n-1}], {n, 3, 13}] // Flatten (* Jean-François Alcover, Jan 14 2014, after Alois P. Heinz *)

Formula

G.f.: (1-x)*x^3/((1+x)*(1-x-y*x)^3). - Geoffrey Critzer, Mar 19 2014

A277792 Squares that are also pentagonal pyramidal numbers.

Original entry on oeis.org

0, 1, 196, 2601, 15376, 60025, 181476, 461041, 1032256, 2099601, 3960100, 7027801, 11861136, 19193161, 29964676, 45360225, 66846976, 96216481, 135629316, 187662601, 255360400, 342287001, 452583076, 591024721, 763085376, 975000625, 1233835876, 1547556921, 1925103376, 2376465001, 2912760900
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 31 2016

Keywords

Comments

Intersection of A000290 and A002411.

Examples

			a(2) = 196 because 196 = 14^2 is a perfect square and 196 = 7^2*(7 + 1)/2 is the 7th pentagonal pyramidal number.
		

Crossrefs

Programs

  • Magma
    [n^2*(2*n^2-1)^2: n in [0..30]]; // Vincenzo Librandi, Nov 01 2016
  • Mathematica
    Table[n^2 (2 n^2 - 1)^2, {n, 0, 30}]
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{0,1,196,2601,15376,60025,181476},40] (* Harvey P. Dale, Nov 01 2024 *)

Formula

O.g.f.: x*(1 + 189*x + 1250*x^2 + 1250*x^3 + 189*x^4 + x^5)/(1 - x)^7.
E.g.f.: x*(1 + 97*x + 336*x^2 + 256*x^3 + 60*x^4 + 4*x^5)*exp(x).
a(n) = a(-n).
a(n) = n^2*(2*n^2 - 1)^2.
a(n) = A000290(A007588(n)).
a(n) = A000290(n)*A000290(A056220(n)).
Sum_{n>=1} 1/a(n) = (2*Pi^2+9*sqrt(2)*Pi*cot(Pi/sqrt(2))+3*Pi^2*csc(Pi/sqrt(2))^2-24)/12 = 1.0055779712856...

A299412 Pentagonal pyramidal numbers divisible by 3.

Original entry on oeis.org

0, 6, 18, 75, 126, 288, 405, 726, 936, 1470, 1800, 2601, 3078, 4200, 4851, 6348, 7200, 9126, 10206, 12615, 13950, 16896, 18513, 22050, 23976, 28158, 30420, 35301, 37926, 43560, 46575, 53016, 56448, 63750, 67626, 75843, 80190, 89376, 94221, 104430, 109800, 121086, 127008, 139425, 145926, 159528, 166635
Offset: 0

Views

Author

Justin Gaetano, Feb 20 2018

Keywords

Examples

			The first 6 pentagonal pyramidal numbers are 0, 1, 6, 18, 40, 75; of these, 0, 6, 18, 75 are divisible by 3.
		

Crossrefs

Programs

  • Magma
    [IsEven(n) select (3*n/2)^2*(3*n/2+1)/2 else ((3*n+1)/2)^2*((3*n+1)/2+1)/2: n in [0..50] ]; // Vincenzo Librandi, Mar 14 2018
  • Maple
    f:= proc(n) if n::even then (3*n/2)^2*(3*n/2+1)/2 else
    ((3*n+1)/2)^2*((3*n+1)/2+1)/2 fi end proc:
    map(f, [$0..100]); # Robert Israel, Feb 28 2018
  • Mathematica
    Array[((3 #1 + #2)/2)^2*((3 #1 + #2)/2 + 1)/2 & @@ {#, Boole@ OddQ@ #} &, 47, 0] (* Michael De Vlieger, Feb 21 2018 *)
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{0,6,18,75,126,288,405},50] (* Harvey P. Dale, Jul 16 2021 *)
  • PARI
    lista(nn) = {for (n=0, nn, if (!(n^2*(n+1)/2 % 3), print1(n^2*(n+1)/2, ", ")););} \\ Michel Marcus, Feb 21 2018
    
  • PARI
    x='x+O('x^99); concat(0, Vec(3*x*(3*x^4+5*x^3+13*x^2+4*x+2)/((x-1)^4*(x+1)^3))) \\ Altug Alkan, Mar 14 2018
    

Formula

a(n) = A007494(n)*A117748(n).
a(n) = (3*n/2)^2*(3*n/2+1)/2 if n even.
a(n) = ((3*n+1)/2)^2*((3*n+1)/2+1)/2 if n odd.
From Omar E. Pol, Feb 21 2018: (Start)
a(n) = 3*A001318(n)*A007494(n).
a(n) = A001318(n)*abs(A269416(n-1)), n >= 1. (End)
G.f.: 3*x*(3*x^4 + 5*x^3 + 13*x^2 + 4*x + 2)/((x-1)^4*(x+1)^3). - Robert Israel, Feb 28 2018

A309176 a(n) = n^2 * (n + 1)/2 - Sum_{k=1..n} sigma_2(k).

Original entry on oeis.org

0, 0, 2, 3, 12, 13, 33, 40, 66, 81, 135, 135, 212, 249, 319, 354, 489, 511, 681, 725, 876, 981, 1233, 1235, 1509, 1660, 1920, 2032, 2437, 2472, 2936, 3091, 3488, 3755, 4275, 4290, 4955, 5292, 5854, 6024, 6843, 6968, 7870, 8190, 8839, 9340, 10420, 10442, 11568, 12038, 13014, 13474, 14851, 15098, 16436
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n^2 (n + 1)/2 - Sum[DivisorSigma[2, k], {k, 1, n}], {n, 1, 55}]
    nmax = 55; CoefficientList[Series[x (1 + 2 x)/(1 - x)^4 - 1/(1 - x) Sum[k^2 x^k/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    Table[Sum[Mod[n, k] k, {k, 1, n}], {n, 1, 55}]
  • PARI
    a(n) = n^2*(n+1)/2 - sum(k=1, n, sigma(k, 2)); \\ Michel Marcus, Sep 18 2021
    
  • Python
    from math import isqrt
    def A309176(n): return (n**2*(n+1)>>1)+((s:=isqrt(n))**2*(s+1)*(2*s+1)-sum((q:=n//k)*(6*k**2+q*(2*q+3)+1) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023

Formula

G.f.: x * (1 + 2*x)/(1 - x)^4 - (1/(1 - x)) * Sum_{k>=1} k^2 * x^k/(1 - x^k).
a(n) = Sum_{k=1..n} (n mod k) * k.
a(n) = A002411(n) - A064602(n).

A343558 Irregular triangle read by rows: the n-th row gives the row indices of the consecutive elements of the spiral of the n X n matrix defined in A126224.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 3, 2, 2, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 3, 2, 2, 2, 3, 3, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5, 5, 5, 5, 4, 3, 2, 2, 2, 2, 3, 4, 4, 4, 3, 3, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 2, 2, 2, 2, 3, 4, 5, 5, 5, 5, 4, 3, 3, 3, 4, 4
Offset: 1

Views

Author

Stefano Spezia, Apr 19 2021

Keywords

Examples

			The triangle begins
1
1   1   2   2
1   1   1   2   3   3   3   2   2
1   1   1   1   2   3   4   4   4   4   3   2   2   2   3   3
...
		

Crossrefs

Cf. A000290 (row length), A002265, A002411 (row sums), A010873, A060747, A126224, A343559 (column indices).

Programs

  • Mathematica
    a:={};nmax:=6;For[n=1,n<=nmax,n++,For[s=1,s<=2n-1,s++,If[OddQ[s] &&Mod[s,4]==1,k=Ceiling[s/4];For[i=1,i<=Ceiling[n-s/2],i++,AppendTo[a,k]],If[EvenQ[s]&&Mod[s,4]==2,For[i=1,i<=Ceiling[n-s/2],i++,AppendTo[a,k+i]];k+=Ceiling[n-s/2],If[EvenQ[s]&&Mod[s,4]==0,For[i=1,i<=Ceiling[n-s/2],i++,AppendTo[a,k-i]];k=k-i+1,For[i=1,i<=Ceiling[n-s/2],i++,AppendTo[a,k]]]]]]];a

A343559 Irregular triangle read by rows: the n-th row gives the column indices of the consecutive elements of the spiral of the n X n matrix defined in A126224.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 2, 3, 3, 3, 2, 1, 1, 2, 1, 2, 3, 4, 4, 4, 4, 3, 2, 1, 1, 1, 2, 3, 3, 2, 1, 2, 3, 4, 5, 5, 5, 5, 5, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 4, 4, 3, 2, 2, 3, 1, 2, 3, 4, 5, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 2, 3, 4, 5, 5, 5, 5, 4, 3, 2, 2, 2, 3, 4, 4, 3
Offset: 1

Views

Author

Stefano Spezia, Apr 19 2021

Keywords

Examples

			The triangle begins
1
1   2   2   1
1   2   3   3   3   2   1   1   2
1   2   3   4   4   4   4   3   2   1   1   1   2   3   3   2
...
		

Crossrefs

Cf. A000290 (row length), A002265, A002411 (row sums), A010873, A060747, A126224, A343558 (row indices).

Programs

  • Mathematica
    a:={};nmax:=6;For[n=1,n<=nmax,n++,For[s=1,s<=2n-1,s++,If[OddQ[s]&&Mod[s,4]==1 ,k=Floor[s/4];For[i=1,i<=Ceiling[n-s/2],i++,AppendTo[a,k+i]];k=+Floor[s/4]+Ceiling[n-s/2],If[EvenQ[s],For[i=1,i<=Ceiling[n-s/2],i++,AppendTo[a,k]],For[i=1,i<=Ceiling[n-s/2],i++,AppendTo[a,k-i]];k=k-i+1]]]]; a

A343853 Irregular triangle read by rows: the n-th row gives the row indices of the matrix of 1..n^2 filled successively back and forth along antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 2, 3, 3, 1, 1, 2, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 3, 4, 4, 1, 1, 2, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5, 5, 4, 3, 4, 5, 5, 1, 1, 2, 3, 2, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 3, 4, 5, 6, 6, 5, 4, 5, 6, 6
Offset: 1

Views

Author

Stefano Spezia, May 01 2021

Keywords

Examples

			The triangle begins:
1
1   1   2   2
1   1   2   3   2   1   2   3   3
1   1   2   3   2   1   1   2   3   4   4   3   2   3   4   4
...
		

Crossrefs

Cf. A000290 (row length), A002411 (row sums), A060747 (number of antidiagonals), A078475, A319573, A343854 (column indices).

Programs

  • Mathematica
    a={};For[n=1,n<=6,n++,For[d=1,d<=n,d++, If[OddQ[d],i=d;For [k=1,k<=d,k++, AppendTo[a,i-k+1]],i=1;For[k=1,k<=d,k++, AppendTo[a,i+k-1]]]];For[d=n+1,d<=2n-1,d++, If[OddQ[d],i= n; For[k=1,k<=2n-d,k++,AppendTo[a,i-k+1]],If[EvenQ[d],i=d-n+1;For[k=1,k<=2n-d,k++, AppendTo[a,i+k-1]]]]]]; a

A343854 Irregular triangle read by rows: the n-th row gives the column indices of the matrix of 1..n^2 filled successively back and forth along antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 3, 2, 3, 1, 2, 1, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 4, 3, 4, 1, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 3, 4, 5, 5, 4, 5, 1, 2, 1, 1, 2, 3, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 4, 5, 6, 6, 5, 6
Offset: 1

Views

Author

Stefano Spezia, May 01 2021

Keywords

Examples

			The triangle begins:
1
1   2   1   2
1   2   1   1   2   3   3   2   3
1   2   1   1   2   3   4   3   2   1   2   3   4   4   3   4
...
		

Crossrefs

Cf. A000290 (row length), A002411 (row sums), A060747 (number of antidiagonals), A078475, A319572, A343853 (row indices).

Programs

  • Mathematica
    a={};For[n=1,n<=6,n++,For[d=1,d<=n,d++, If[EvenQ[d],i=d;For [k=1,k<=d,k++, AppendTo[a,i-k+1]],i=1;For[k=1,k<=d,k++, AppendTo[a,i+k-1]]]];For[d=n+1,d<=2n-1,d++, If[EvenQ[d],i= n; For[k=1,k<=2n-d,k++,AppendTo[a,i-k+1]],If[OddQ[d],i=d-n+1;For[k=1,k<=2n-d,k++, AppendTo[a,i+k-1]]]]]]; a
Previous Showing 101-110 of 147 results. Next