cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 147 results. Next

A177708 Pentagonal triangle.

Original entry on oeis.org

1, 6, 12, 18, 57, 51, 40, 156, 209, 145, 75, 330, 531, 534, 330, 126, 600, 1074, 1278, 1122, 651, 196, 987, 1895, 2488, 2559, 2081, 1162, 288, 1512, 3051, 4275, 4824, 4563, 3537, 1926, 405, 2196, 4599, 6750, 8100, 8370, 7506, 5634, 3015
Offset: 1

Views

Author

Jonathan Vos Post, Dec 11 2010

Keywords

Comments

This is to A093445 as pentagonal numbers A000326 are to triangular numbers A000217. The n-th row of the triangular table begins by considering A000217(n) pentagonal numbers (starting with 1) in order. Now segregate them into n chunks beginning with n members in the first chunk, n-1 members in the second chunk, and so forth. Now sum each chunk. Thus the first term is the sum of first n numbers = n*(3n-1)/2, the second term is the sum of the next n-1 terms (from n+1 to 2n-1), the third term is the sum of the next n-2 terms (2n to 3n-3)... This triangle can be called the pentagonal triangle. The sequence contains the triangle by rows. The first column is A002411 (Pentagonal pyramidal numbers: n^2*(n+1)/2).

Examples

			The row for n = 4 is (1+5+12+22), (35+51+70), (92+117), 145 => 40, 156, 209, 145.
    1;
    6,   12;
   18,   57,   51;
   40,  156,  209,   145;
   75,  330,  531,   534,   330;
  126,  600, 1074,  1278,  1122,   651;
  196,  987, 1895,  2488,  2559,  2081,  1162;
  288, 1512, 3051,  4275,  4824,  4563,  3537,  1926;
  405, 2196, 4599,  6750,  8100,  8370,  7506,  5634, 3015;
  550, 3060, 6596, 10024, 12570, 13775, 13450, 11631, 8534, 4510;
		

Crossrefs

Cf. A000217, A000326, A002411, A093445, A236770 (right border).

Programs

  • Maple
    A000326 :=proc(n) n*(3*n-1)/2 ; end proc:
    A177708 := proc(n,k) kc := 1 ; nsk := n ; ns := 1 ; while kc < k do ns := ns+nsk ; kc := kc+1 ; nsk := nsk-1 ; end do: add(A000326(i),i=ns..ns+nsk-1) ; end proc: # R. J. Mathar, Dec 14 2010
  • Mathematica
    Table[Total/@TakeList[PolygonalNumber[5,Range[60]],Range[n,1,-1]],{n,10}]//Flatten (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Feb 17 2018 *)

Formula

T(n,1) = A002411(n).
T(n,2) = n*(n-1)*(7*n-2)/2.
T(n,3) = (n-2)*(19*n^2-26*n+9)/2 = Sum_{i=2n..3(n-1)} A000326(i).

A272039 a(n) = 10*n^2 + 4*n + 1.

Original entry on oeis.org

1, 15, 49, 103, 177, 271, 385, 519, 673, 847, 1041, 1255, 1489, 1743, 2017, 2311, 2625, 2959, 3313, 3687, 4081, 4495, 4929, 5383, 5857, 6351, 6865, 7399, 7953, 8527, 9121, 9735, 10369, 11023, 11697, 12391, 13105, 13839, 14593, 15367, 16161, 16975, 17809, 18663, 19537
Offset: 0

Views

Author

Vincenzo Librandi, Apr 20 2016

Keywords

Comments

Polynomials from the table "Coefficients and roots of Ehrhart polynomials" in Beck et al. paper (see Links section):
. Cube: A000578;
. Cube minus corner: A004068;
. Prism: A002411;
. Octahedron: A005900;
. Square pyramid: A000330;
. Bypyramid: A006003;
. Unimodular tetrahedron: A000292;
. Fat tetrahedron: A167875;
. Cyclic(2,5), which has the same polynomial form of this sequence.
a(n) for n = 0, -1, 1, -2, 2, -3, 3, ... gives all x such that (5*x - 3)/2 is a square.
Squares in sequence: 1, 49, 1385329, 101263969, 2880599856289, ...
Is this 1 followed by A228219?

Crossrefs

Programs

  • Magma
    [10*n^2+4*n+1: n in [0..50]];
    
  • Mathematica
    Table[10 n^2 + 4 n + 1, {n, 0, 50}]
    LinearRecurrence[{3,-3,1},{1,15,49},50] (* Harvey P. Dale, Dec 26 2021 *)
  • PARI
    a(n)=10*n^2+4*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

O.g.f.: (1 + 12*x + 7*x^2)/(1 - x)^3.
E.g.f.: (1 + 14*x + 10*x^2)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 2*A168668(n) + 1.

Extensions

Edited by Bruno Berselli, Apr 22 2016

A329754 Doubly pentagonal pyramidal numbers.

Original entry on oeis.org

0, 1, 126, 3078, 32800, 213750, 1008126, 3783976, 11985408, 33297075, 83338750, 191592126, 410450976, 828497488, 1589341950, 2917620000, 5154021376, 8801526501, 14585352318, 23529456550, 37052820000, 57089119626, 86233820926, 127923156648, 186649920000, 268221484375, 380065968126
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 20 2019

Keywords

Crossrefs

Programs

  • Mathematica
    A002411[n_] := n^2 (n + 1)/2; a[n_] := A002411[A002411[n]]; Table[a[n], {n, 0, 26}]
    Table[Sum[k (3 k - 1)/2, {k, 0, n^2 (n + 1)/2}], {n, 0, 26}]
    nmax = 26; CoefficientList[Series[x (1 + 116 x + 1863 x^2 + 7570 x^3 + 9350 x^4 + 3474 x^5 + 304 x^6 + 2 x^7)/(1 - x)^10, {x, 0, nmax}], x]
    LinearRecurrence[{10, -45, 120, -210, 252, -210, 120, -45, 10, -1}, {0, 1, 126, 3078, 32800, 213750, 1008126, 3783976, 11985408, 33297075}, 27]

Formula

G.f.: x*(1 + 116*x + 1863*x^2 + 7570*x^3 + 9350*x^4 + 3474*x^5 + 304*x^6 + 2*x^7)/(1 - x)^10.
a(n) = A002411(A002411(n)).
a(n) = Sum_{k=0..A002411(n)} A000326(k).
a(n) = n^4 *(n^3+n^2+2) *(n+1)^2 /16. - R. J. Mathar, Nov 28 2019

A368607 Irregular triangular array T, read by rows: T(n,k) = number of sums |x-y| + |y-z| = k, where x,y,z are in {1,2,...,n} and x != y and y < z.

Original entry on oeis.org

1, 3, 2, 1, 5, 6, 4, 2, 1, 7, 10, 10, 6, 4, 2, 1, 9, 14, 16, 14, 9, 6, 4, 2, 1, 11, 18, 22, 22, 19, 12, 9, 6, 4, 2, 1, 13, 22, 28, 30, 29, 24, 16, 12, 9, 6, 4, 2, 1, 15, 26, 34, 38, 39, 36, 30, 20, 16, 12, 9, 6, 4, 2, 1, 17, 30, 40, 46, 49, 48, 44, 36, 25
Offset: 1

Views

Author

Clark Kimberling, Jan 25 2024

Keywords

Comments

Row n consists of 2n-1 positive integers.

Examples

			First six rows:
 1
 3    2   1
 5    6   4   2  1
 7   10  10   6  4   2   1
 9   14  16  14  9   6   4  2  1
 11  18  22  22  19  12  9  6  4  2  1
For n=3, there are 6 triples (x,y,z) having x != y and y < z:
  123:  |x-y| + |y-z| = 2
  212:  |x-y| + |y-z| = 2
  213:  |x-y| + |y-z| = 3
  312:  |x-y| + |y-z| = 3
  313:  |x-y| + |y-z| = 4
  323:  |x-y| + |y-z| = 2
so row 2 of the array is (3,2,1), representing three 2s, two 3s, and one 4.
		

Crossrefs

Cf. A005408 (column 1), A002411 (row sums), A002620 (limiting reversed row), A368434, A368437, A368515, A368516, A368517, A368518, A368519, A368520, A368521, A368522, A368604, A368605, A368606, A368609.

Programs

  • Mathematica
    t1[n_] := t1[n] = Tuples[Range[n], 3];
    t[n_] := t[n] = Select[t1[n], #[[1]] != #[[2]] < #[[3]] &];
    a[n_, k_] := Select[t[n], Abs[#[[1]] - #[[2]]] + Abs[#[[2]] - #[[3]]] == k &];
    u = Table[Length[a[n, k]], {n, 2, 15}, {k, 2, 2 n - 2}];
    v = Flatten[u] (* sequence *)
    Column[Table[Length[a[n, k]], {n, 2, 15}, {k, 2, 2 n - 2}]] (* array *)

A372583 a(n) = (3*n^5 + 5*n^3)/8.

Original entry on oeis.org

1, 17, 108, 424, 1250, 3051, 6517, 12608, 22599, 38125, 61226, 94392, 140608, 203399, 286875, 395776, 535517, 712233, 932824, 1205000, 1537326, 1939267, 2421233, 2994624, 3671875, 4466501, 5393142, 6467608, 7706924, 9129375, 10754551, 12603392, 14698233
Offset: 1

Views

Author

Kelvin Voskuijl, May 05 2024

Keywords

Comments

Sum of pentagonal numbers in increasing groups 1, 5+12, 22+35+51, 70+92+117+145 etc.

Examples

			The first ten pentagonal numbers are 1, 5, 12, 22, 35, 51, 70, 92, 117, and 145.  Taking them in groups, respectively, of 1, 2, 3, and 4, i.e., (1), (5, 12), (22, 35, 51), and (70, 92, 117, 145), and summing each group separately gives 1, 17, 108, 424.
		

Crossrefs

Cf. A260513 (for triangular numbers), A072474 (for squares).
Cf. A000326 (pentagonal numbers), A002411 (their partial sums).

Programs

Formula

From Stefano Spezia, May 06 2024: (Start)
G.f.: x*(1 + 11*x + 21*x^2 + 11*x^3 + x^4)/(1 - x)^6.
E.g.f.: exp(x)*x*(8 + 60*x + 80*x^2 + 30*x^3 + 3*x^4)/8. (End)

A374501 Pentagonal pyramidal numbers that are products of smaller pentagonal pyramidal numbers.

Original entry on oeis.org

1, 56448, 127008, 259200, 5644800, 31840200, 42688800, 60766200, 116493300, 130662720, 193179168, 442828800, 499000500, 897544800, 917632800, 3624409800, 6914880000, 13831171200, 15410656800, 31246000128, 53936416800, 64024732800, 72945774720, 88957620000
Offset: 1

Views

Author

Pontus von Brömssen, Jul 09 2024

Keywords

Examples

			1 is a term because it is a pentagonal pyramidal number and equals the empty product.
56448 is a term because it is a pentagonal pyramidal number and equals the product of the pentagonal pyramidal numbers 196 and 288.
127008 is a term because it is a pentagonal pyramidal number and equals the product of the pentagonal pyramidal numbers 6, 6, 18, and 196.
		

Crossrefs

Row n=5 of A374498.

A376180 Triangle read by rows (blocks). Each row consists of a permutation of the numbers of its constituents. The length of row number n is the n-th pentagonal number n(3n-1)/2 = A000326(n); see Comments.

Original entry on oeis.org

1, 4, 5, 3, 6, 2, 13, 12, 14, 11, 15, 10, 16, 9, 17, 8, 18, 7, 30, 29, 31, 28, 32, 27, 33, 26, 34, 25, 35, 24, 36, 23, 37, 22, 38, 21, 39, 20, 40, 19, 58, 59, 57, 60, 56, 61, 55, 62, 54, 63, 53, 64, 52, 65, 51, 66, 50, 67, 49, 68, 48, 69, 47, 70, 46, 71, 45, 72, 44, 73, 43, 74, 42, 75, 41, 101, 102, 100, 103, 99, 104, 98, 105, 97, 106, 96, 107
Offset: 1

Views

Author

Boris Putievskiy, Sep 14 2024

Keywords

Comments

A209278 presents an algorithm for generating permutations.
The sequence is an intra-block permutation of integer positive numbers.

Examples

			Triangle begins:
     k =  1   2   3   4   5   6   7   8   9  10  11  12
  n=1:    1;
  n=2:    4,  5,  3,  6,  2;
  n=3:   13, 12, 14, 11, 15, 10, 16,  9, 17,  8, 18,  7;
Subtracting (n-1)^2*n/2 from each term in row n is a permutation of 1 .. n(3n-1)/2:
  1;
  3,4,2,5,1;
  7,6,8,5,9,4,10,3,11,2,12,1;
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{L,R,P,Result},L=Ceiling[Max[x/.NSolve[x^2 (x+1)-2 n==0,x,Reals]]];
    R=n-((L-1)^2)*L/2; P=Which[OddQ[R]&&OddQ[L*(3*L-1)/2],(L*(3*L-1)/2-R+2)/2,OddQ[R]&&EvenQ[L*(3*L-1)/2],(R+L*(3*L-1)/2+1)/2,EvenQ[R]&&OddQ[L*(3*L-1)/2],Ceiling[(L*(3*L-1)/2+1)/2]+R/2, EvenQ[R]&&EvenQ[L*(3*L-1)/2],Ceiling[(L*(3*L-1)/2+1)/2]-R/2 ];
    Result=P+(L-1)^2*L/2; Result]
    Nmax=18; Table[a[n],{n,1,Nmax}]

Formula

Linear sequence:
a(n) = P(n) + (L(n)-1)^2*L(n)/2. a(n) = P(n) + A002411(L(n)-1), where P = (L(n)(3L(n) - 1)/2 - R(n) + 2)/2 if R(n) is odd and L(n)(3L(n) - 1)/2 is odd, P = (R(n) + L(n)(3L(n) - 1)/2 + 1)/2 if R(n) is odd and L(n)(3L(n) - 1)/2 is even, P = ceiling((L(n)(3L(n) - 1)/2 + 1)/2) + R(n)/2 if R(n) is even and L(n)(3L(n) - 1)/2 is odd, P = ceiling((L(n)(3L(n) - 1)/2 + 1)/2) - R(n)/2 if R(n) is even and L(n)(3L(n) - 1)/2 is even. L(n) = ceiling(x(n)), x(n) is largest real root of the equation x^2*(x+1)-2*n = 0.
Triangular array T(n,k) for 1 <= k <= n(3n-1)/2 (see Example):
T(n,k) = P(n,k) + (n-1)^2*n/2, T(n,k) = P(n,k) + A002411(n-1), where P(n,k) = (n(3n - 1)/2 - k + 2)/2 if k is odd and n(3n - 1)/2 is odd,
P(n,k) = (k + n(3n - 1)/2 + 1)/2 if k is odd and n(3n - 1)/2 is even, P(n,k) = ceiling((n(3n - 1)/2 + 1)/2) + k/2 if k is even and n(3n - 1)/2 is odd, P(n,k) = ceiling((n(3n - 1)/2 + 1)/2) - k/2 if k is even and n(3n - 1)/2 is even.

A094930 Triangle T(n,m) read by rows, defined by squaring a matrix with row entries 2+3*(m-1).

Original entry on oeis.org

4, 14, 25, 30, 65, 64, 52, 120, 152, 121, 80, 190, 264, 275, 196, 114, 275, 400, 462, 434, 289, 154, 375, 560, 682, 714, 629, 400, 200, 490, 744, 935, 1036, 1020, 860, 529, 252, 620, 952, 1221, 1400, 1462, 1380, 1127, 676, 310, 765, 1184, 1540, 1806, 1955, 1960
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Comments

Matrix square of the matrix B(n,m) = 2+3*(m-1), B containing the first terms of A016789
in its row n, n>0, 1<=m<=n.

Examples

			The matrix B starts as
  2 ;
  2,5 ;
  2,5,8 ;
  2,5,8,11 ;
  2,5,8,11,14 ;
and interpreting this as a lower triangular matrix, its square T = B^2 starts
  4;
  14,25;
  30,65,64;
  52,120,152,121;
		

Crossrefs

Programs

  • Maple
    A094930 := proc(n,m) (3*m-1)*(3*m+3*n-2)*(n+1-m)/2 ; end: seq(seq(A094930(n,m),m=1..n),n=1..20) ; # R. J. Mathar, Oct 09 2009

Formula

T(n,m) = sum_{k=m..n} B(n,k)*B(k,m) = (3*m-1)*(3*m+3*n-2)*(n+1-m)/2.
Row sums: sum_{m=1..n} T(n,m) = A024212(n).
G.f. as triangle: x*y*(4+2*x+13*x*y-16*x^2*y+x^2*y^2-4*x^3*y^2)/((1-x)*(1-x*y))^3. - Robert Israel, May 06 2019

Extensions

Edited and extended by R. J. Mathar, Oct 09 2009

A096037 Triangle T(n,m) = (3*n+3*m-2)*(n+1-m)/2 read by rows.

Original entry on oeis.org

2, 7, 5, 15, 13, 8, 26, 24, 19, 11, 40, 38, 33, 25, 14, 57, 55, 50, 42, 31, 17, 77, 75, 70, 62, 51, 37, 20, 100, 98, 93, 85, 74, 60, 43, 23, 126, 124, 119, 111, 100, 86, 69, 49, 26, 155, 153, 148, 140, 129, 115, 98, 78, 55, 29, 187, 185, 180, 172, 161, 147, 130, 110, 87, 61, 32
Offset: 1

Views

Author

Gary W. Adamson, Jun 17 2004

Keywords

Examples

			The triangle starts in row n=1 as
2;
7,5;
15,13,8;
26,24,19,11;
		

Crossrefs

Programs

  • Python
    def A096037(n,m):
        return (3*n+3*m-2)*(n+1-m)//2
    print( [A096037(n,m) for n in range(20) for m in range(1,n+1)] )
    # R. J. Mathar, Oct 11 2009

Formula

T(n,m) = (3*n+3*m-2)*(n+1-m)/2 .
T(n,m) = A094930(n,m)/(3*m-1).
T(n,1) = A005449(n).
T(n,n) = A016768(n-1).
Row sums: sum_{m=1..n} T(n,m) = n^2*(n+1) = A011379(n).

Extensions

Edited and extended, A-numbers corrected by R. J. Mathar, Oct 11 2009

A136359 Perfect squares in A133459; or perfect squares that are the sums of two nonzero pentagonal pyramidal numbers.

Original entry on oeis.org

36, 81, 144, 289, 484, 576, 625, 676, 3600, 7396, 9801, 14400, 35344, 40000, 40804, 44100, 45796, 56644, 59049, 71824, 112896, 121104, 172225, 226576, 231361, 254016, 274576, 290521, 319225, 362404, 480249, 495616, 518400, 527076, 535824
Offset: 1

Views

Author

Alexander Adamchuk, Dec 25 2007

Keywords

Comments

Corresponding numbers m such that m^2 = a(n) are listed in A136360.
Note that some numbers in A136360 are also perfect squares. The corresponding numbers k such that m = k^2 are listed in A136361.
Includes all nonzero members of A099764: this occurs when the two pentagonal pyramidal numbers are both equal to i^2*(i+1)/2 where i+1 is a square. - Robert Israel, Feb 04 2020

Examples

			A133459 begins {2, 7, 12, 19, 24, 36, 41, 46, 58, 76, 80, 81, 93, 115, 127, 132, 144, 150, 166, 197, 201, 202, 214, 236, 252, 271, 289, ...}.
Thus a(1) = 36, a(2) = 81, a(3) = 144, a(4) = 289 that are the perfect squares in A133459.
		

Crossrefs

Programs

  • Maple
    N:= 200: # for terms up to N^2*(N+1)/2.
    PP:= [seq(i^2*(i+1)/2, i=1..N)]:
    PP2:= sort(convert(select(`<=`,{seq(seq(PP[i]+PP[j],j=i..N),i=1..N)},PP[-1]),list)):
    select(issqr,PP2); # Robert Israel, Feb 04 2020
  • Mathematica
    Select[ Intersection[ Flatten[ Table[ i^2*(i+1)/2 + j^2*(j+1)/2, {i,1,300}, {j,1,i} ] ] ], IntegerQ[ Sqrt[ # ] ] & ]

Formula

a(n) = A136360(n)^2.
Previous Showing 81-90 of 147 results. Next