cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 93 results. Next

A193068 Generating primitive Pythagorean triangles by using (n, n+1) gives perimeters for each n. This sequence lists the sum of these perimeters for each n triangles.

Original entry on oeis.org

12, 42, 98, 188, 320, 502, 742, 1048, 1428, 1890, 2442, 3092, 3848, 4718, 5710, 6832, 8092, 9498, 11058, 12780, 14672, 16742, 18998, 21448, 24100, 26962, 30042, 33348, 36888, 40670, 44702, 48992, 53548, 58378, 63490, 68892, 74592, 80598, 86918, 93560
Offset: 1

Views

Author

J. M. Bergot, Jul 15 2011

Keywords

Comments

Partial sums of A002939 starting at A002939(2). - R. J. Mathar, Aug 23 2011

Examples

			The perimeters of the first five triangles produced by pairs (1,2), (2,3), (3,4), (4,5), (5,6) are in order 12, 30, 56, 90, 132 with sum 320.
From the formula, a(5) = 5*(4*5^2 + 15*5 + 17)/3 = 320.
		

Crossrefs

Cf. A083374 (sum of areas for the first n triangles), A002412.

Programs

  • Magma
    I:=[12, 42, 98, 188]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Jul 04 2012
  • Mathematica
    CoefficientList[Series[(2*(6-3*x+x^2))/((x-1)^4),{x,0,50}],x] (* Vincenzo Librandi, Jul 04 2012 *)
    LinearRecurrence[{4,-6,4,-1},{12,42,98,188},40] (* Harvey P. Dale, Oct 29 2022 *)

Formula

a(n) = n*(4*n^2 + 15*n + 17)/3.
G.f.: ( 2*x*(6-3*x+x^2) ) / ( (x-1)^4 ). - R. J. Mathar, Aug 23 2011
a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Vincenzo Librandi, Jul 04 2012
a(n) = 2*(A002412(n+1) - 1). - Hugo Pfoertner, Oct 22 2024

A266387 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 322560.

Original entry on oeis.org

0, 0, 0, 0, 0, 7, 42, 147, 392, 882, 1764, 3234, 5544, 9009, 14014, 21021, 30576, 43316, 59976, 81396, 108528, 142443, 184338, 235543, 297528, 371910, 460460, 565110, 687960, 831285, 997542, 1189377, 1409632, 1661352, 1947792, 2272424, 2638944, 3051279
Offset: 1

Views

Author

Keywords

Comments

The sequence was discovered by enumerating all orbits of Aut(Z^7) and sorting the orbits as function of the infinity norm of the representative integer lattice points. This sequence is one of the 30 sequences that are obtained by classifying the orbits in a table with the rows being the infinity norm and the columns being the 30 cardinalities (1, 14, 84, 128, 168, 280, 448, 560, 672, 840, 896, 1680, 2240, 2688, 3360, 4480, 5376, 6720, 8960, 13440, 17920, 20160, 26880, 40320, 53760, 80640, 107520, 161280, 322560, 645120) generated by signed permutations of integer lattice points of Z^7.
The continued fraction expansion of this sequence is finite and simplifies to the g.f. 7*x^6/(1-x)^6 (see Mathematica). - Benedict W. J. Irwin, Feb 09 2016

Crossrefs

Other sequences that give the number of orbits of Aut(Z^7) as function of the infinity norm for different cardinalities of these orbits: A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A001477, A000217.

Programs

  • Mathematica
    Join[{0, 0, 0, 0, 0},Table[Abs[SeriesCoefficient[Series[7/(x+6/(x - 5/2/(x + ContinuedFractionK[If[Mod[k, 2] ==0, (7 + k/2)/(6 + 2 k), ((k + 1)/2 - 5)/(2 (k - 1) +6)], x, {k, 0, 8}]))), {x, Infinity, 101}],2 n + 1]], {n, 0, 50}]] - (* Benedict W. J. Irwin, Feb 09 2016 *)
  • PARI
    concat(vector(5), Vec(7*x^6/(1-x)^6 + O(x^50))) \\ Colin Barker, May 04 2016

Formula

From Colin Barker, Dec 29 2015: (Start)
a(n) = 7*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)/120.
a(n) = 6*a(n-1)-15*a(n-2)+20*a(n-3)-15*a(n-4)+6*a(n-5)-a(n-6) for n>6.
G.f.: 7*x^6 / (1-x)^6.
(End)

A266395 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 161280.

Original entry on oeis.org

0, 0, 0, 0, 15, 75, 225, 525, 1050, 1890, 3150, 4950, 7425, 10725, 15015, 20475, 27300, 35700, 45900, 58140, 72675, 89775, 109725, 132825, 159390, 189750, 224250, 263250, 307125, 356265, 411075, 471975, 539400, 613800, 695640, 785400, 883575, 990675, 1107225
Offset: 1

Views

Author

Keywords

Crossrefs

Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A001477, A000217.

Programs

  • PARI
    concat(vector(4), Vec(15*x^5/(1-x)^5 + O(x^50))) \\ Colin Barker, May 05 2016

Formula

From Colin Barker, Dec 29 2015: (Start)
a(n) = 5*(n-1)*(n-2)*(n-3)*(n-4)/8 = 15*A000332(n-1).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>5.
G.f.: 15*x^5 / (1-x)^5.
(End)

A266396 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 80640.

Original entry on oeis.org

0, 0, 0, 10, 41, 105, 215, 385, 630, 966, 1410, 1980, 2695, 3575, 4641, 5915, 7420, 9180, 11220, 13566, 16245, 19285, 22715, 26565, 30866, 35650, 40950, 46800, 53235, 60291, 68005, 76415, 85560, 95480, 106216, 117810, 130305, 143745, 158175, 173641, 190190
Offset: 1

Views

Author

Keywords

Crossrefs

Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A001477, A000217.

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,0,0,10,41},50] (* Harvey P. Dale, Nov 18 2024 *)
  • PARI
    concat(vector(3), Vec(x^4*(10-9*x)/(1-x)^5 + O(x^50))) \\ Colin Barker, May 05 2016

Formula

From Colin Barker, Dec 29 2015: (Start)
a(n) = (n^4+30*n^3-205*n^2+390*n-216)/24.
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) for n>5.
G.f.: x^4*(10-9*x) / (1-x)^5.
(End)

A266397 Number of orbits of Aut(Z^7) as function of the infinity norm n of the representative lattice point of the orbit, when the cardinality of the orbit is equal to 26880.

Original entry on oeis.org

0, 0, 9, 31, 70, 130, 215, 329, 476, 660, 885, 1155, 1474, 1846, 2275, 2765, 3320, 3944, 4641, 5415, 6270, 7210, 8239, 9361, 10580, 11900, 13325, 14859, 16506, 18270, 20155, 22165, 24304, 26576, 28985, 31535, 34230, 37074, 40071, 43225, 46540, 50020, 53669
Offset: 1

Views

Author

Keywords

Crossrefs

Number of orbits of Aut(Z^7) as function of the infinity norm A000579, A154286, A102860, A002412, A045943, A115067, A008586, A008585, A005843, A001477, A000217.

Programs

  • PARI
    concat(vector(2), Vec(x^3*(9-5*x)/(1-x)^4 + O(x^50))) \\ Colin Barker, May 05 2016

Formula

From Colin Barker, Dec 29 2015: (Start)
a(n) = (4*n^3+3*n^2-37*n+30)/6.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>4.
G.f.: x^3*(9-5*x) / (1-x)^4.
(End)

A279662 a(n) = (2/3)^n*Gamma(n+3/4)*Gamma(n+1)*Gamma(n+2)/Gamma(3/4).

Original entry on oeis.org

1, 1, 7, 154, 7700, 731500, 117771500, 29678418000, 11040371496000, 5796195035400000, 4144279450311000000, 3920488359994206000000, 4790836775912919732000000, 7411424492337286825404000000, 14266992147749277138902700000000, 33670101468688294047810372000000000
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 16 2016

Keywords

Comments

Hexagonal pyramidal factorial numbers.
More generally, the m-gonal pyramidal factorial numbers is 6^(-n)*(m-2)^n*Gamma(n+1)*Gamma(n+2)*Gamma(n+3/(m-2))/Gamma(3/(m-2)), m>2.

Crossrefs

Cf. A002412.
Cf. A000680 (hexagonal factorial numbers).
Cf. A087047 (tetrahedral factorial numbers), A135438 (square pyramidal factorial numbers), A167484 (pentagonal pyramidal factorial numbers), A279663 (heptagonal pyramidal factorial numbers).

Programs

  • Magma
    [Round((2/3)^n*Gamma(n+3/4)*Gamma(n+1)*Gamma(n+2) / Gamma(3/4)): n in [0..20]]; // Vincenzo Librandi, Dec 17 2016
  • Mathematica
    FullSimplify[Table[(2/3)^n Gamma[n + 3/4] Gamma[n + 1] Gamma[n + 2]/Gamma[3/4], {n, 0, 15}]]

Formula

a(n) = Product_{k=1..n} k*(k + 1)*(4*k - 1)/6, a(0)=1.
a(n) = Product_{k=1..n} A002412(k), a(0)=1.
a(n) ~ (2*Pi)^(3/2)*(2/3)^n*n^(3*n+9/4)/(Gamma(3/4)*exp(3*n)).

A376923 T(n, k) = T(n - 1, k) + 2^(n - 1)*T(n - 2, k - 1), if k > 0 and T(n, 0) = 2^n.

Original entry on oeis.org

1, 2, 0, 4, 2, 0, 8, 10, 0, 0, 16, 42, 16, 0, 0, 32, 170, 176, 0, 0, 0, 64, 682, 1520, 512, 0, 0, 0, 128, 2730, 12400, 11776, 0, 0, 0, 0, 256, 10922, 99696, 206336, 65536, 0, 0, 0, 0, 512, 43690, 798576, 3380736, 3080192, 0, 0, 0, 0, 0, 1024, 174762, 6390640, 54425088, 108724224, 33554432, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Thomas Scheuerle, Oct 17 2024

Keywords

Comments

This is the case r = 2 of the more general recurrence: T(n, k, r) = T(n-1, k, r) + r^(n-1)*T(n - 2, k - 1, r), if k > 0 and T(n, 0, r) = 1 + (r^n - 1)/(r - 1) if r > 1. Consider the sequence b(n) = Sum_{k=0..n-1} b(n - k - 1)*T(n - 1, k, r)*(-1)^k, with b(0) = 1. The sequence b(n) will have an ordinary generating function which can be represented as the continued fraction expansion: 1/(1 - x/(1 - r^0*x/(1 - r^1*x/(1 - r^2*x/(1 - r^3*x/(...)))))). In short b(n) will have the ordinary generating function 1/(1-G(x)*x), where G(x) is the generating function of the Carlitz-Riordan q-Catalan numbers for q = r. The Hankel determinant of b(0)..b(2*n) will be r^A016061(n). The Hankel determinant of b(1)..b(2*n+1) will be r^A002412(n).

Examples

			Triangle begins:
n\k  0 |  1 |  2 | 3 | 4 | 5
[0]  1,
[1]  2,   0
[2]  4,   2,   0
[3]  8,  10,   0,  0
[4] 16,  42,  16,  0,  0
[5] 32, 170, 176,  0,  0,  0
		

Crossrefs

Programs

  • PARI
    T(n, k) = if(n < 0, return(0), return(if(k == 0, return(2^n), T(n-1,k) + 2^(n-1)*T(n-2,k-1))))

Formula

Column k has o.g.f.: x^(2*k)*2^(k^2)/((1 - 2^(k+1)*x)*Product_{m=1..k}(1 - 2^(m-1)*x)).

A377132 The expansion of 1/(1 - G(x)*x), where G(x) is the ordinary generating function of the Carlitz-Riordan q-Catalan numbers for q = 2 (A015083).

Original entry on oeis.org

1, 1, 2, 6, 28, 228, 3592, 113880, 7267952, 929696784, 237968445472, 121835841547872, 124758916812038592, 255505766282965942848, 1046551115668335283290240, 8573345713494489300568753536, 140465691975467799273799959144192, 4602779760325164559879331800453222656, 301647773810532495378626041621616755442176, 39537576990478498231890121766124629197694682624
Offset: 0

Views

Author

Thomas Scheuerle, Oct 19 2024

Keywords

Crossrefs

Programs

  • PARI
    A376923(n, k) = if(n < 0, return(0),return(if(k == 0, return(2^n), T(n-1, k) + 2^(n-1)*T(n-2, k-1) )))
    a(n) = if(n==0, 1, sum(k=0, n-1, a(n-k-1)*A376923(n-1, k)*(-1)^k))

Formula

O.g.f.: Continued fraction expansion 1/(1 - x/(1 - 2^0*x/(1 - 2^1*x/(1 - 2^2*x/(1 - 2^3*x/(...)))))).
a(n) = Sum_{k=0..n-1} a(n - k - 1)*A376923(n - 1, k)*(-1)^k, with a(0) = 1.
The Hankel determinant of a(0)..a(2*n) is 2^A016061(n). The Hankel determinant of a(1)..a(2*n+1) is 2^A002412(n).

A128116 A128064 * A122432 (unsigned).

Original entry on oeis.org

1, 5, 2, 12, 7, 3, 22, 15, 9, 4, 35, 26, 18, 11, 5, 51, 40, 30, 21, 13, 6, 70, 57, 45, 34, 24, 15, 7, 92, 77, 63, 50, 38, 27, 17, 8, 117, 100, 84, 69, 55, 42, 30, 19, 9, 145, 126, 108, 91, 75, 60, 46, 33, 21, 10
Offset: 1

Views

Author

Gary W. Adamson, Feb 14 2007

Keywords

Comments

Left border of the triangle = A000326, the pentagonal numbers: (1, 5, 12, 22, 35, ...).
Row sums = A002412: (1, 7, 22, 50, 95, ...).

Examples

			First few rows of the triangle:
   1;
   5,  2;
  12,  7,  3;
  22, 15,  9,  4;
  35, 26, 18, 11,  5;
  51, 40, 30, 21, 13,  6;
  70, 57, 45, 34, 24, 15,  7;
  ...
		

Crossrefs

Formula

A128064 * A122432 (unsigned), where the unsigned version of A122432 = (1; 3, 1; 6, 3, 1; 10, 6, 3, 1; ...).

A267522 a(n) = 4*(n + 1)*(n + 2)*(4*n + 3)/3.

Original entry on oeis.org

8, 56, 176, 400, 760, 1288, 2016, 2976, 4200, 5720, 7568, 9776, 12376, 15400, 18880, 22848, 27336, 32376, 38000, 44240, 51128, 58696, 66976, 76000, 85800, 96408, 107856, 120176, 133400, 147560, 162688, 178816, 195976, 214200, 233520, 253968, 275576, 298376, 322400
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 09 2016

Keywords

Comments

Partial sums of A152750.

Examples

			a(0) = (0 + 2)*(1 + 3) = 8;
a(1) = (0 + 2)*(1 + 3) + (2 + 4)*(3 + 5) = 56;
a(2) = (0 + 2)*(1 + 3) + (2 + 4)*(3 + 5) + (4 + 6)*(5 + 7) = 176;
a(3) = (0 + 2)*(1 + 3) + (2 + 4)*(3 + 5) + (4 + 6)*(5 + 7) + (6 + 8)*(7 + 9) = 400, etc
		

Crossrefs

Programs

  • Mathematica
    Table[(4 (n + 1)) (n + 2) ((4 n + 3)/3), {n, 0, 38}]
    LinearRecurrence[{4, -6, 4, -1}, {8, 56, 176, 400}, 39]
  • PARI
    a(n) = 4*(n + 1)*(n + 2)*(4*n + 3)/3; \\ Michel Marcus, Apr 10 2016
    
  • PARI
    x='x+O('x^99); Vec(8*(1+3*x)/(1-x)^4) \\ Altug Alkan, Apr 10 2016

Formula

G.f.: 8*(1 + 3*x)/(1 - x)^4.
E.g.f.: (4/3)*exp(x)*(6 + 36*x + 27*x^2 + 4*x^3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 4*A268684(n + 1).
Sum_{n>=0} 1/a(n) = -3*(2*Pi - 12*log(2) + 1)/20 = 0.15518712893...
a(n) = 8*A002412(n+1). - Yasser Arath Chavez Reyes, Feb 23 2024
Previous Showing 81-90 of 93 results. Next