cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A213550 Rectangular array: (row n) = b**c, where b(h) = h*(h+1)/2, c(h) = n-1+h, n>=1, h>=1, and ** = convolution.

Original entry on oeis.org

1, 5, 2, 15, 9, 3, 35, 25, 13, 4, 70, 55, 35, 17, 5, 126, 105, 75, 45, 21, 6, 210, 182, 140, 95, 55, 25, 7, 330, 294, 238, 175, 115, 65, 29, 8, 495, 450, 378, 294, 210, 135, 75, 33, 9, 715, 660, 570, 462, 350, 245, 155, 85, 37, 10, 1001, 935, 825, 690, 546
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2012

Keywords

Comments

Principal diagonal: A002418
Antidiagonal sums: A005585
row 1, (1,3,6,...)**(1,2,3,...): A000332
row 2, (1,3,6,...)**(2,3,4,...): A005582
row 3, (1,3,6,...)**(3,4,5,...): A095661
row 4, (1,3,6,...)**(4,5,6,...): A095667
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1....5....15...35....70....126
2....9....25...55....105...182
3....13...35...75....140...238
4....17...45...95....175...294
5....21...55...115...210...350
		

Crossrefs

Programs

  • Mathematica
    b[n_] := n (n + 1)/2; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213550 *)
    d = Table[t[n, n], {n, 1, 40}] (* A002418 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A005585 *)

Formula

T(n,k) = 5*T(n,k-1) - 10*T(n,k-2) + 10*T(n,k-3) - 5*T(n,k-4) + T(n,k-5).
G.f. for row n: f(x)/g(x), where f(x) = n-(n-1)*x and g(x) = (1 - x)^5.

A125234 Triangle T(n,k) read by rows: the k-th column contains the k-fold iterated partial sum of A000566.

Original entry on oeis.org

1, 7, 1, 18, 8, 1, 34, 26, 9, 1, 55, 60, 35, 10, 1, 81, 115, 95, 45, 11, 1, 112, 196, 210, 140, 56, 12, 1, 148, 308, 406, 350, 196, 68, 13, 1, 189, 456, 714, 756, 546, 264, 81, 14, 1, 235, 645, 1170, 1470, 1302, 810, 345, 95, 15, 1, 286, 880, 1815, 2640, 2772, 2112, 1155, 440, 110, 16, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 24 2006

Keywords

Comments

The leftmost column contains the heptagonal numbers A000566.
The adjacent columns to the right are A002413, A002418, A027800, A051946, A050484.
Row sums = 1, 8, 27, 70, 161, 348, 727, ... = 6*(2^n-1)-5*n.

Examples

			First few rows of the triangle are:
  1;
  7, 1;
  18, 8, 1;
  34, 26, 9, 1;
  55, 60, 35, 10, 1;
  81, 115, 95, 45, 11, 1;
  112, 196, 210, 140, 56, 12, 1;
Example: T(6,2) = 95 = 35 + 60 = T(5,2) + T(5,1).
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, 1966, p. 189.

Crossrefs

Analogous triangles for the hexagonal and pentagonal numbers are A125233 and A125232.

Programs

  • Maple
    A000566 := proc(n) n*(5*n-3)/2 ; end: A125234 := proc(n,k) if k = 0 then A000566(n); elif k>= n then 0 ; else procname(n-1,k-1)+procname(n-1,k) ; fi; end: seq(seq(A125234(n,k),k=0..n-1),n=1..16) ; # R. J. Mathar, Sep 09 2009
  • Mathematica
    A000566[n_] := n(5n-3)/2;
    T[n_, k_] := Which[k == 0, A000566[n], k >= n, 0, True, T[n-1, k-1] + T[n-1, k] ];
    Table[Table[T[n, k], {k, 0, n-1}], {n, 1, 11}] // Flatten (* Jean-François Alcover, Oct 26 2023, after R. J. Mathar *)

Formula

T(n,0) = A000566(n). T(n,k) = T(n-1,k) + T(n-1,k-1), k>0.

Extensions

Edited and extended by R. J. Mathar, Sep 09 2009

A261721 Fourth-dimensional figurate numbers.

Original entry on oeis.org

1, 1, 5, 1, 6, 15, 1, 7, 20, 35, 1, 8, 25, 50, 70, 1, 9, 30, 65, 105, 126, 1, 10, 35, 80, 140, 196, 210, 1, 11, 40, 95, 175, 266, 336, 330, 1, 12, 45, 110, 210, 336, 462, 540, 495, 1, 13, 50, 125, 245, 406, 588, 750, 825, 715, 1, 14, 55, 140, 280, 476, 714, 960, 1155, 1210, 1001, 1
Offset: 1

Views

Author

Gary W. Adamson, Aug 30 2015

Keywords

Comments

Generating polygons for the sequences are: Triangle, Square, Pentagon, Hexagon, Heptagon, Octagon, ... .
n-th row sequence is the binomial transform of the fourth row of Pascal's triangle (1,n) followed by zeros; and the fourth partial sum of (1, n, n, n, ...).
n-th row sequence is the binomial transform of:
((n-1) * (0, 1, 3, 3, 1, 0, 0, 0) + (1, 4, 6, 4, 1, 0, 0, 0)).
Given the n-th row of the array (1, b, c, d, ...), the next row of the array is (1, b, c, d, ...) + (0, 1, 5, 15, 35, ...)

Examples

			The array as shown in A257200:
  1,  5, 15,  35,  70, 126, 210,  330, ... A000332
  1,  6, 20,  50, 105, 196, 336,  540, ... A002415
  1,  7, 25,  65, 140, 266, 462,  750, ... A001296
  1,  8, 30,  80, 175, 336, 588,  960, ... A002417
  1,  9, 35,  95, 210, 406, 714, 1170, ... A002418
  1, 10, 40, 110, 245, 476, 840, 1380, ... A002419
  ...
(1, 7, 25, 65, 140, ...) is the third row of the array and is the binomial transform of the fourth row of Pascal's triangle (1,3) followed by zeros: (1, 6, 12, 10, 3, 0, 0, 0, ...); and the fourth partial sum of (1, 3, 3, 3, 0, 0, 0).
(1, 7, 25, 65, 140, ...) is the third row of the array and is the binomial transform of: (2 * (0, 1, 3, 3, 1, 0, 0, 0, ...) + (1, 4, 6, 4, 1, 0, 0, 0, ...)); that is, the binomial transform of (1, 6, 12, 10, 3, 0, 0, 0, ...).
Row 2 of the array is (1, 5, 15, 35, 70, ...) + (0, 1, 5, 15, 35, ...), = (1, 6, 20, 50, 105, ...).
		

References

  • Albert H. Beiler, "Recreations in the Theory of Numbers"; Dover, 1966, p. 195 (Table 80).

Crossrefs

Cf. A257200, A261720 (pyramidal numbers), A000332, A002415, A001296, A002417, A002418, A002419.
Similar to A080852 but without row n=0.
Main diagonal gives A256859.

Programs

  • Maple
    A:= (n, k)-> binomial(k+3, 3) + n*binomial(k+3, 4):
    seq(seq(A(d-k, k), k=0..d-1), d=1..13);  # Alois P. Heinz, Aug 31 2015
  • Mathematica
    row[1] = LinearRecurrence[{5, -10, 10, -5, 1}, {1, 5, 15, 35, 70}, m = 10];
    row1 = Join[{0}, row[1] // Most]; row[n_] := row[n] = row[n-1] + row1;
    Table[row[n-k+1][[k]], {n, 1, m}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 26 2016 *)
  • PARI
    A(n, k) = binomial(k+3, 3) + n*binomial(k+3, 4)
    table(n, k) = for(x=1, n, for(y=0, k-1, print1(A(x, y), ", ")); print(""))
    /* Print initial 6 rows and 8 columns as follows: */
    table(6, 8) \\ Felix Fröhlich, Jul 28 2016

Formula

G.f. for row n: (1 + (n-1)*x)/(1 - x)^5.
A(n,k) = C(k+3,3) + n * C(k+3,4) = A080852(n,k).
E.g.f. as array: exp(y)*(exp(x)*(24 + 24*(3 + x)*y + 36*(1 + x)*y^2 + 4*(1 + 3*x)*y^3 + x*y^4) - 4*(6 + 18*y + 9*y^2 + y^3))/24. - Stefano Spezia, Aug 15 2024

A317020 Expansion of Product_{k>=1} 1/(1 - x^k)^((5*k-1)*binomial(k+2,3)/4).

Original entry on oeis.org

1, 1, 10, 45, 185, 710, 2766, 10270, 37444, 132765, 462327, 1579563, 5311361, 17584084, 57414594, 185032557, 589183035, 1854974066, 5778722817, 17823440534, 54458411332, 164917654587, 495219323844, 1475145786950, 4360576440676, 12796007418881, 37287660835368, 107930276062786
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 19 2018

Keywords

Comments

Euler transform of A002418.

Crossrefs

Programs

  • Maple
    a:=series(mul(1/(1-x^k)^((5*k-1)*binomial(k+2,3)/4),k=1..100),x=0,28): seq(coeff(a,x,n),n=0..27); # Paolo P. Lava, Apr 02 2019
  • Mathematica
    nmax = 27; CoefficientList[Series[Product[1/(1 - x^k)^((5 k - 1) Binomial[k + 2, 3]/4), {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 27; CoefficientList[Series[Exp[Sum[x^k (1 + 4 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1) (d + 2) (5 d - 1)/24, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 27}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A002418(k).
G.f.: exp(Sum_{k>=1} x^k*(1 + 4*x^k)/(k*(1 - x^k)^5)).
a(n) ~ (5/7)^(703/8640)/(2 * 3^(2143/2880) * n^(5023/8640) * Pi^(17/1440)) * exp(-1/144 + (1/12-Zeta'(-1))/12 - (21 * Zeta(3))/(400 * Pi^2) + (62921 * Zeta(5))/(80000 * Pi^4) - (194481 * Zeta(3) * Zeta(5)^2)/(50 * Pi^12) - (200120949 * Zeta(5)^3)/(1250 * Pi^14) + (28594081676916 * Zeta(5)^5)/(3125 * Pi^24) + (7 * Zeta'(-3))/12 + ((-343 * (7/5)^(1/6) * Pi)/(96000 * sqrt(3)) + (147 * (7/5)^(1/6) * sqrt(3) * Zeta(3) * Zeta(5))/(10 * Pi^7) + (1058841 * (7/5)^(1/6) * sqrt(3) * Zeta(5)^2)/(2000 * Pi^9) - (18211006359 * (7/5)^(1/6) * sqrt(3) * Zeta(5)^4)/(500 * Pi^19)) * n^(1/6) + (-((7/5)^(1/3) * Zeta(3))/(4 * Pi^2) - (1029 * (7/5)^(1/3) * Zeta(5))/(200 * Pi^4) + (10890936 * (7/5)^(1/3) * Zeta(5)^3)/(25 * Pi^14)) * n^(1/3) + ((7 * sqrt(7/15) * Pi)/120 - (9261 * sqrt(21/5) * Zeta(5)^2)/(5 * Pi^9)) * sqrt(n) + ((63 * (7/5)^(2/3) * Zeta(5))/(2 * Pi^4)) * n^(2/3) + ((2 * sqrt(3) * Pi)/(5^(5/6) * 7^(1/6))) * n^(5/6)). - Vaclav Kotesovec, Jul 28 2018

A322652 Numbers that are sums of consecutive heptagonal pyramidal numbers (A002413).

Original entry on oeis.org

0, 1, 8, 9, 26, 34, 35, 60, 86, 94, 95, 115, 175, 196, 201, 209, 210, 308, 311, 371, 397, 405, 406, 456, 504, 619, 645, 679, 705, 713, 714, 764, 880, 960, 1075, 1101, 1135, 1161, 1166, 1169, 1170, 1409, 1508, 1525, 1605, 1720, 1780, 1806, 1814, 1815, 1911, 1981, 2046, 2289, 2380
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    imax = 55;
    A002413 = LinearRecurrence[{4, -6, 4, -1}, {1, 8, 26, 60}, imax];
    Join[{0}, Table[A002413[[i ;; j]] // Total, {i, 1, imax}, {j, i, imax}] // Flatten // Union][[;; imax]] (* Jean-François Alcover, Nov 11 2024 *)

A366036 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^5 / (1 - 4 * A(x)).

Original entry on oeis.org

0, 1, 9, 127, 2165, 40914, 824859, 17383720, 378373437, 8440227235, 191938302578, 4433259845898, 103716352560119, 2452629475989840, 58529969579982600, 1407775987050271920, 34092047564798908045, 830565580516900384329, 20342106952028722530603, 500573735323751221019425, 12370242700776737398052970
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 26 2023

Keywords

Comments

Reversion of g.f. for 4-dimensional figurate numbers A002418 (with signs).

Crossrefs

Programs

  • Mathematica
    nmax = 20; A[] = 0; Do[A[x] = x (1 + A[x])^5/(1 - 4 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    CoefficientList[InverseSeries[Series[x (1 - 4 x)/(1 + x)^5, {x, 0, 20}], x], x]	
    Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[5 n, n - k - 1] 4^k, {k, 0, n - 1}], {n, 1, 20}]]

Formula

a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(5*n,n-k-1) * 4^k for n > 0.
a(n) ~ sqrt(34*sqrt(6) - 81) * 2^(n - 11/4) * 3^(n - 5/4) * (3/2 - 1/sqrt(6))^(5*n) / (sqrt(Pi) * n^(3/2) * (3*sqrt(6) - 7)^n). - Vaclav Kotesovec, Sep 27 2023

A234277 a(n) = binomial(floor(n/2),4) + (ceiling(n/2)-3)*binomial(floor(n/2),3).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 5, 9, 25, 35, 75, 95, 175, 210, 350, 406, 630, 714, 1050, 1170, 1650, 1815, 2475, 2695, 3575, 3861, 5005, 5369, 6825, 7280, 9100, 9660, 11900, 12580, 15300, 16116, 19380, 20349, 24225, 25365, 29925, 31255, 36575, 38115, 44275, 46046, 53130, 55154, 63250, 65550, 74750, 77350, 87750, 90675
Offset: 0

Views

Author

N. J. A. Sloane, Dec 27 2013

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-x^7 (4 x + 1)/((x - 1)^5 (x + 1)^4), {x, 0, 40}], x] (* Vincenzo Librandi Feb 01 2014 *)
    LinearRecurrence[{1,4,-4,-6,6,4,-4,-1,1},{0,0,0,0,0,0,0,1,5},60] (* Harvey P. Dale, Jun 27 2020 *)
  • PARI
    Vec(-x^7*(4*x+1)/((x-1)^5*(x+1)^4) + O(x^100)) \\ Colin Barker, Jan 02 2014

Formula

G.f.: -x^7*(4*x+1) / ((x-1)^5*(x+1)^4). - Colin Barker, Jan 02 2014
a(n) = (2*n - 1 + (-1)^n)*(2*n - 5 + (-1)^n)*(2*n - 9 + (-1)^n)*(10*n - 57 - 3*(-1)^n)/6144. - Luce ETIENNE, Nov 18 2017

A287143 Expansion of x*(1 + 3*x + x^2)/((1 - x)^5*(1 + x)^4).

Original entry on oeis.org

0, 1, 4, 9, 21, 35, 65, 95, 155, 210, 315, 406, 574, 714, 966, 1170, 1530, 1815, 2310, 2695, 3355, 3861, 4719, 5369, 6461, 7280, 8645, 9660, 11340, 12580, 14620, 16116, 18564, 20349, 23256, 25365, 28785, 31255, 35245, 38115, 42735, 46046, 51359, 55154, 61226, 65550, 72450, 77350, 85150, 90675, 99450, 105651, 115479
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 15 2017

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[x (1 + 3 x + x^2)/((1 - x)^5 (1 + x)^4), {x, 0, 52}], x]
    LinearRecurrence[{1, 4, -4, -6, 6, 4, -4, -1, 1}, {0, 1, 4, 9, 21, 35, 65, 95, 155}, 53]

Formula

G.f.: x*(1 + 3*x + x^2)/((1 - x)^5*(1 + x)^4).
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9).
Generalized 4-dimensional figurate numbers (A002418): (5*n - 1)*binomial(n + 2,3)/4, n = 0,+1,-3,+2,-4,+3,-5, ...
Convolution of the sequences A027656 and A085787.
a(n) = (2*n+3+(-1)^n)*(2*n+7+(-1)^n)*(5*(2*n^2+10*n+3)-3*(2*n+5)*(-1)^n)/3072. - Luce ETIENNE, Nov 18 2017
Previous Showing 11-18 of 18 results.