cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A213500 Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1

Views

Author

Clark Kimberling, Jun 14 2012

Keywords

Comments

Principal diagonal: A002412.
Antidiagonal sums: A002415.
Row 1: (1,2,3,...)**(1,2,3,...) = A000292.
Row 2: (1,2,3,...)**(2,3,4,...) = A005581.
Row 3: (1,2,3,...)**(3,4,5,...) = A006503.
Row 4: (1,2,3,...)**(4,5,6,...) = A060488.
Row 5: (1,2,3,...)**(5,6,7,...) = A096941.
Row 6: (1,2,3,...)**(6,7,8,...) = A096957.
...
In general, the convolution of two infinite sequences is defined from the convolution of two n-tuples: let X(n) = (x(1),...,x(n)) and Y(n)=(y(1),...,y(n)); then X(n)**Y(n) = x(1)*y(n)+x(2)*y(n-1)+...+x(n)*y(1); this sum is the n-th term in the convolution of infinite sequences:(x(1),...,x(n),...)**(y(1),...,y(n),...), for all n>=1.
...
In the following guide to related arrays and sequences, row n of each array T(n,k) is the convolution b**c of the sequences b(h) and c(h+n-1). The principal diagonal is given by T(n,n) and the n-th antidiagonal sum by S(n). In some cases, T(n,n) or S(n) differs in offset from the listed sequence.
b(h)........ c(h)........ T(n,k) .. T(n,n) .. S(n)
h .......... h .......... A213500 . A002412 . A002415
h .......... h^2 ........ A212891 . A213436 . A024166
h^2 ........ h .......... A213503 . A117066 . A033455
h^2 ........ h^2 ........ A213505 . A213546 . A213547
h .......... h*(h+1)/2 .. A213548 . A213549 . A051836
h*(h+1)/2 .. h .......... A213550 . A002418 . A005585
h*(h+1)/2 .. h*(h+1)/2 .. A213551 . A213552 . A051923
h .......... h^3 ........ A213553 . A213554 . A101089
h^3 ........ h .......... A213555 . A213556 . A213547
h^3 ........ h^3 ........ A213558 . A213559 . A213560
h^2 ........ h*(h+1)/2 .. A213561 . A213562 . A213563
h*(h+1)/2 .. h^2 ........ A213564 . A213565 . A101094
2^(h-1) .... h .......... A213568 . A213569 . A047520
2^(h-1) .... h^2 ........ A213573 . A213574 . A213575
h .......... Fibo(h) .... A213576 . A213577 . A213578
Fibo(h) .... h .......... A213579 . A213580 . A053808
Fibo(h) .... Fibo(h) .... A067418 . A027991 . A067988
Fibo(h+1) .. h .......... A213584 . A213585 . A213586
Fibo(n+1) .. Fibo(h+1) .. A213587 . A213588 . A213589
h^2 ........ Fibo(h) .... A213590 . A213504 . A213557
Fibo(h) .... h^2 ........ A213566 . A213567 . A213570
h .......... -1+2^h ..... A213571 . A213572 . A213581
-1+2^h ..... h .......... A213582 . A213583 . A156928
-1+2^h ..... -1+2^h ..... A213747 . A213748 . A213749
h .......... 2*h-1 ...... A213750 . A007585 . A002417
2*h-1 ...... h .......... A213751 . A051662 . A006325
2*h-1 ...... 2*h-1 ...... A213752 . A100157 . A071238
2*h-1 ...... -1+2^h ..... A213753 . A213754 . A213755
-1+2^h ..... 2*h-1 ...... A213756 . A213757 . A213758
2^(n-1) .... 2*h-1 ...... A213762 . A213763 . A213764
2*h-1 ...... Fibo(h) .... A213765 . A213766 . A213767
Fibo(h) .... 2*h-1 ...... A213768 . A213769 . A213770
Fibo(h+1) .. 2*h-1 ...... A213774 . A213775 . A213776
Fibo(h) .... Fibo(h+1) .. A213777 . A001870 . A152881
h .......... 1+[h/2] .... A213778 . A213779 . A213780
1+[h/2] .... h .......... A213781 . A213782 . A005712
1+[h/2] .... [(h+1)/2] .. A213783 . A213759 . A213760
h .......... 3*h-2 ...... A213761 . A172073 . A002419
3*h-2 ...... h .......... A213771 . A213772 . A132117
3*h-2 ...... 3*h-2 ...... A213773 . A214092 . A213818
h .......... 3*h-1 ...... A213819 . A213820 . A153978
3*h-1 ...... h .......... A213821 . A033431 . A176060
3*h-1 ...... 3*h-1 ...... A213822 . A213823 . A213824
3*h-1 ...... 3*h-2 ...... A213825 . A213826 . A213827
3*h-2 ...... 3*h-1 ...... A213828 . A213829 . A213830
2*h-1 ...... 3*h-2 ...... A213831 . A213832 . A212560
3*h-2 ...... 2*h-1 ...... A213833 . A130748 . A213834
h .......... 4*h-3 ...... A213835 . A172078 . A051797
4*h-3 ...... h .......... A213836 . A213837 . A071238
4*h-3 ...... 2*h-1 ...... A213838 . A213839 . A213840
2*h-1 ...... 4*h-3 ...... A213841 . A213842 . A213843
2*h-1 ...... 4*h-1 ...... A213844 . A213845 . A213846
4*h-1 ...... 2*h-1 ...... A213847 . A213848 . A180324
[(h+1)/2] .. [(h+1)/2] .. A213849 . A049778 . A213850
h .......... C(2*h-2,h-1) A213853
...
Suppose that u = (u(n)) and v = (v(n)) are sequences having generating functions U(x) and V(x), respectively. Then the convolution u**v has generating function U(x)*V(x). Accordingly, if u and v are homogeneous linear recurrence sequences, then every row of the convolution array T satisfies the same homogeneous linear recurrence equation, which can be easily obtained from the denominator of U(x)*V(x). Also, every column of T has the same homogeneous linear recurrence as v.

Examples

			Northwest corner (the array is read by southwest falling antidiagonals):
  1,  4, 10, 20,  35,  56,  84, ...
  2,  7, 16, 30,  50,  77, 112, ...
  3, 10, 22, 40,  65,  98, 140, ...
  4, 13, 28, 50,  80, 119, 168, ...
  5, 16, 34, 60,  95, 140, 196, ...
  6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
		

Crossrefs

Cf. A000027.

Programs

  • Mathematica
    b[n_] := n; c[n_] := n
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213500 *)
  • PARI
    t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
    tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
    tabl(12) \\ Indranil Ghosh, Mar 26 2017
    
  • Python
    def t(n, k): return sum((k - i) * (n + i) for i in range(k))
    for n in range(1, 13):
        print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017

Formula

T(n,k) = 4*T(n,k-1) - 6*T(n,k-2) + 4*T(n,k-3) - T(n,k-4).
T(n,k) = 2*T(n-1,k) - T(n-2,k).
G.f. for row n: x*(n - (n - 1)*x)/(1 - x)^4.

A005585 5-dimensional pyramidal numbers: a(n) = n*(n+1)*(n+2)*(n+3)*(2n+3)/5!.

Original entry on oeis.org

1, 7, 27, 77, 182, 378, 714, 1254, 2079, 3289, 5005, 7371, 10556, 14756, 20196, 27132, 35853, 46683, 59983, 76153, 95634, 118910, 146510, 179010, 217035, 261261, 312417, 371287, 438712, 515592, 602888, 701624, 812889, 937839, 1077699, 1233765, 1407406
Offset: 1

Views

Author

Keywords

Comments

Convolution of triangular numbers (A000217) and squares (A000290) (n>=1). - Graeme McRae, Jun 07 2006
p^k divides a(p^k-3), a(p^k-2), a(p^k-1) and a(p^k) for prime p > 5 and integer k > 0. p^k divides a((p^k-3)/2) for prime p > 5 and integer k > 0. - Alexander Adamchuk, May 08 2007
If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-5) is the number of 6-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
5-dimensional square numbers, fourth partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} binomial(n+4, i+4)*b(i), where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Antidiagonal sums of the convolution array A213550. - Clark Kimberling, Jun 17 2012
Binomial transform of (1, 6, 14, 16, 9, 2, 0, 0, 0, ...). - Gary W. Adamson, Jul 28 2015
2*a(n) is number of ways to place 4 queens on an (n+3) X (n+3) chessboard so that they diagonally attack each other exactly 6 times. The maximal possible attack number, p=binomial(k,2)=6 for k=4 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form a corresponding complete graph. - Antal Pinter, Dec 27 2015
While adjusting for offsets, add A000389 to find the next in series A000389, A005585, A051836, A034263, A027800, A051843, A051877, A051878, A051879, A051880, A056118, A271567. (See Bruno Berselli's comments in A271567.) - Bruce J. Nicholson, Jun 21 2018
Coefficients in the terminating series identity 1 - 7*n/(n + 6) + 27*n*(n - 1)/((n + 6)*(n + 7)) - 77*n*(n - 1)*(n - 2)/((n + 6)*(n + 7)*(n + 8)) + ... = 0 for n = 1,2,3,.... Cf. A002415 and A040977. - Peter Bala, Feb 18 2019

Examples

			G.f. = x + 7*x^2 + 27*x^3 + 77*x^4 + 182*x^5 + 378*x^6 + 714*x^7 + 1254*x^8 + ... - _Michael Somos_, Jun 24 2018
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = ((-1)^(n+1))*A053120(2*n+3, 5)/16, (1/16 of sixth unsigned column of Chebyshev T-triangle, zeros omitted).
Partial sums of A002415.
Cf. A006542, A040977, A047819, A111125 (third column).
Cf. a(n) = ((-1)^(n+1))*A084960(n+1, 2)/16 (compare with the first line). - Wolfdieter Lang, Aug 04 2014

Programs

  • Magma
    I:=[1, 7, 27, 77, 182, 378]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Jun 09 2013
    
  • Maple
    [seq(binomial(n+2,6)-binomial(n,6), n=4..45)]; # Zerinvary Lajos, Jul 21 2006
    A005585:=(1+z)/(z-1)**6; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    With[{c=5!},Table[n(n+1)(n+2)(n+3)(2n+3)/c,{n,40}]] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{1,7,27,77,182,378},40] (* Harvey P. Dale, Oct 04 2011 *)
    CoefficientList[Series[(1 + x) / (1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
  • PARI
    a(n)=binomial(n+3,4)*(2*n+3)/5 \\ Charles R Greathouse IV, Jul 28 2015

Formula

G.f.: x*(1+x)/(1-x)^6.
a(n) = 2*C(n+4, 5) - C(n+3, 4). - Paul Barry, Mar 04 2003
a(n) = C(n+3, 5) + C(n+4, 5). - Paul Barry, Mar 17 2003
a(n) = C(n+2, 6) - C(n, 6), n >= 4. - Zerinvary Lajos, Jul 21 2006
a(n) = Sum_{k=1..n} T(k)*T(k+1)/3, where T(n) = n(n+1)/2 is a triangular number. - Alexander Adamchuk, May 08 2007
a(n-1) = (1/4)*Sum_{1 <= x_1, x_2 <= n} |x_1*x_2*det V(x_1,x_2)| = (1/4)*Sum_{1 <= i,j <= n} i*j*|i-j|, where V(x_1,x_2) is the Vandermonde matrix of order 2. First differences of A040977. - Peter Bala, Sep 21 2007
a(n) = C(n+4,4) + 2*C(n+4,5). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), a(1)=1, a(2)=7, a(3)=27, a(4)=77, a(5)=182, a(6)=378. - Harvey P. Dale, Oct 04 2011
a(n) = (1/6)*Sum_{i=1..n+1} (i*Sum_{k=1..i} (i-1)*k). - Wesley Ivan Hurt, Nov 19 2014
E.g.f.: x*(2*x^4 + 35*x^3 + 180*x^2 + 300*x + 120)*exp(x)/120. - Robert Israel, Nov 19 2014
a(n) = A000389(n+3) + A000389(n+4). - Bruce J. Nicholson, Jun 21 2018
a(n) = -a(-3-n) for all n in Z. - Michael Somos, Jun 24 2018
From Amiram Eldar, Jun 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 40*(16*log(2) - 11)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 20*(8*Pi - 25)/3. (End)
a(n) = A004302(n+1) - A207361(n+1). - J. M. Bergot, May 20 2022
a(n) = Sum_{i=0..n+1} Sum_{j=i..n+1} i*j*(j-i)/2. - Darío Clavijo, Oct 11 2023
a(n) = (A000538(n+1) - A000330(n+1))/12. - Yasser Arath Chavez Reyes, Feb 21 2024

A002418 4-dimensional figurate numbers: a(n) = (5*n-1)*binomial(n+2,3)/4.

Original entry on oeis.org

0, 1, 9, 35, 95, 210, 406, 714, 1170, 1815, 2695, 3861, 5369, 7280, 9660, 12580, 16116, 20349, 25365, 31255, 38115, 46046, 55154, 65550, 77350, 90675, 105651, 122409, 141085, 161820, 184760, 210056, 237864, 268345, 301665, 337995
Offset: 0

Views

Author

Keywords

Comments

Partial sums of A002413.
Principal diagonal of the convolution array A213550, for n>0. - Clark Kimberling, Jun 17 2012
Convolution of A000027 with A000566. - Bruno Berselli, Dec 06 2012
Coefficients in the hypergeometric series identity 1 - 9*(x - 1)/(4*x + 1) + 35*(x - 1)*(x - 2)/((4*x + 1)*(4*x + 2)) - 95*(x - 1)*(x - 2)*(x - 3)/((4*x + 1)*(4*x + 2)*(4*x + 3)) + ... = 0, valid for Re(x) > 1. Cf. A000326 and A002412. Column 4 of A103450. - Peter Bala, Mar 14 2019

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 195.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093562 ((5, 1) Pascal, column m=4).
Cf. A220212 for a list of sequences produced by the convolution of the natural numbers with the k-gonal numbers.

Programs

  • GAP
    List([0..40],n->(5*n-1)*Binomial(n+2,3)/4); # Muniru A Asiru, Mar 18 2019
    
  • Magma
    [(5*n - 1)*Binomial(n + 2, 3)/4: n in [0..40]]; // Vincenzo Librandi, Oct 17 2012
    
  • Magma
    /* A000027 convolved with A000566: */ A000566:=func; [&+[(n-i+1)*A000566(i): i in [0..n]]: n in [0..35]]; // Bruno Berselli, Dec 06 2012
    
  • Mathematica
    Table[(5n-1) Binomial[n+2,3]/4,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{0,1,9,35,95},40] (* Harvey P. Dale, Oct 16 2012 *)
    CoefficientList[Series[x*(1 + 4*x)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, Oct 17 2012 *)
  • PARI
    a(n)=(5*n-1)*binomial(n+2,3)/4 \\ Charles R Greathouse IV, Sep 24 2015
    
  • Sage
    [(5*n-1)*binomial(n+2,3)/4 for n in (0..40)] # G. C. Greubel, Jul 03 2019

Formula

G.f.: x*(1+4*x)/(1-x)^5. - Simon Plouffe in his 1992 dissertation.
Starting (1, 9, 35, 95, ...), = A128064 * A000332, (A000332 starting 1, 5, 15, 35, 70, ...), such that a(n) = n*C(n+3,4) - (n-1)*C(n+2,4). E.g., a(5) = 210 = 5*C(8,4) - 4*C(7,4) = 5*70 - 4*35. - Gary W. Adamson, Dec 28 2007
Unit digit, A010879(a(n)), is one of {0,1,9,5,6,4} [Eric Desbiaux] because a(n) mod 5 = 0,1,4,0,0, periodic with period 5. [Proof: A002413(n) mod 5 = 1,3,1,0,0 with period 5 and a(n) are the partial sums of A002413.] - R. J. Mathar, Mar 19 2008
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5). - Harvey P. Dale, Oct 16 2012
a(n) = A080852(5,n-1). - R. J. Mathar, Jul 28 2016
a(n) = Sum_{i=0..n} (n-i) * Sum_{j=i..n} j. - J. M. Bergot, May 30 2017
E.g.f.: x*(24 + 84*x + 44*x^2 + 5*x^3)*exp(x)/4!. - G. C. Greubel, Jul 03 2019
Sum_{n>=1} 1/a(n) = (50*sqrt(5)*log(phi) + 125*log(5) - 50*sqrt(1+2/sqrt(5))*Pi - 26)/11, where phi is the golden ratio (A001622). - Amiram Eldar, Feb 11 2022

A095661 Fifth column (m=4) of (1,3)-Pascal triangle A095660.

Original entry on oeis.org

3, 13, 35, 75, 140, 238, 378, 570, 825, 1155, 1573, 2093, 2730, 3500, 4420, 5508, 6783, 8265, 9975, 11935, 14168, 16698, 19550, 22750, 26325, 30303, 34713, 39585, 44950, 50840, 57288, 64328, 71995, 80325, 89355, 99123, 109668, 121030, 133250, 146370
Offset: 0

Views

Author

Wolfdieter Lang, Jun 11 2004

Keywords

Comments

If Y is a 3-subset of an n-set X then, for n>=6, a(n-6) is the number of 4-subsets of X having at most one element in common with Y. - Milan Janjic, Nov 23 2007
Row 3 of the convolution array A213550. - Clark Kimberling, Jun 20 2012

Crossrefs

Partial sums of A006503.
Cf. A213550.

Programs

Formula

G.f.: (3-2*x)/(1-x)^5.
a(n) = (n+12)*binomial(n+3, 3)/4 = 3*b(n)-2*b(n-1), with b(n) := binomial(n+4, 4); cf. A000332.
a(n) = Sum_{k=1..n} Sum_{i=1..k} i*(n-k+3), with offset 1. - Wesley Ivan Hurt, Sep 25 2013

A005582 a(n) = n*(n+1)*(n+2)*(n+7)/24.

Original entry on oeis.org

0, 2, 9, 25, 55, 105, 182, 294, 450, 660, 935, 1287, 1729, 2275, 2940, 3740, 4692, 5814, 7125, 8645, 10395, 12397, 14674, 17250, 20150, 23400, 27027, 31059, 35525, 40455, 45880, 51832, 58344, 65450, 73185, 81585, 90687, 100529, 111150, 122590, 134890
Offset: 0

Views

Author

Keywords

Comments

a(n) = number of Dyck (n+2)-paths with exactly 2 rows of peaks. A row of peaks is a maximal sequence of peaks all at the same height and 2 units apart. For example, UDUDUD ( = /\/\/\ ) contains exactly one row of peaks, as does UUUDDD, but UDUUDDUD has three and a(1)=2 counts UDUUDD, UUDDUD. - David Callan, Mar 02 2005
If X is an n-set and Y a fixed 2-subset of X then a(n-4) is equal to the number of (n-4)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
Let I=I_n be the n X n identity matrix and P=P_n be the incidence matrix of the cycle (1,2,3,...,n). Then, for n>=7, a(n-7) is the number of (0,1) n X n matrices A<=P^(-1)+I+P having exactly two 1's in every row and column with perA=16. - Vladimir Shevelev, Apr 12 2010
Row 2 of the convolution array A213550. - Clark Kimberling, Jun 20 2012
a(n-1) = risefac(n, 4)/4! - risefac(n, 2)/2! is for n >= 1 also the number of independent components of a symmetric traceless tensor of rank 4 and dimension n. Here risefac is the rising factorial. - Wolfdieter Lang, Dec 10 2015
Consider the array formed by the second polygonal numbers of increasing rank:
A000217(-1-n): 0, 1, 3, 6, 10, 15, ...
A000270(-1-n): 1, 4, 9, 16, 25, 36, ...
A000326(-1-n): 2, 7, 15, 26, 40, 57, ...
A000384(-1-n): 3, 10, 21, 36, 55, 78, ...
Then the antidiagonal sums yield this sequence. - Michael Somos, Nov 23 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
  • Vladimir S. Shevelyov (Shevelev), Extension of the Moser class of four-line Latin rectangles, DAN Ukrainy, 3(1992),15-19. [From Vladimir Shevelev, Apr 12 2010]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. M. Yaglom and I. M. Yaglom: Challenging Mathematical Problems with Elementary Solutions. Vol. I. Combinatorial Analysis and Probability Theory. New York: Dover Publications, Inc., 1987, p. 13, #51 (the case k=4) (First published: San Francisco: Holden-Day, Inc., 1964)

Crossrefs

Partial sums of A005581.

Programs

  • Maple
    [seq(binomial(n,4)+2*binomial(n,3), n=2..43)]; # Zerinvary Lajos, Jul 26 2006
    seq((n+4)*binomial(n,4)/n, n=3..43); # Zerinvary Lajos, Feb 28 2007
    A005582:=(-2+z)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[n(n+1)(n+2)(n+7)/24,{n,0,40}] (* Harvey P. Dale, Jun 01 2012 *)
  • PARI
    concat(0, Vec(x*(2-x)/(1-x)^5 + O(x^100))) \\ Altug Alkan, Dec 10 2015

Formula

a(n) = binomial(n+3, n-1) + binomial(n+2, n-1).
a(n) = binomial(n,4) + 2*binomial(n,3), n>=2. - Zerinvary Lajos, Jul 26 2006
From Colin Barker, Jan 28 2012: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: x*(2-x)/(1-x)^5. (End)
a(n) = Sum_{k=1..n} ( Sum_{i=1..k} i(n-k+2) ). - Wesley Ivan Hurt, Sep 26 2013
a(n+1) = A127672(8+n, n), n >= 0, with the Chebyshev C-polynomial coefficients A127672(n, k). See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
E.g.f.: (1/24)*x*(48 + 60*x + 16*x^2 + x^3)*exp(x). - G. C. Greubel, Jul 01 2017
Sum_{n>=1} 1/a(n) = 853/1225. - Amiram Eldar, Jan 02 2021
a(n) = A005587(-7-n) for all n in Z. - Michael Somos, Nov 23 2021

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jun 01 2000

A095667 Fifth column (m=4) of (1,4)-Pascal triangle A095666.

Original entry on oeis.org

4, 17, 45, 95, 175, 294, 462, 690, 990, 1375, 1859, 2457, 3185, 4060, 5100, 6324, 7752, 9405, 11305, 13475, 15939, 18722, 21850, 25350, 29250, 33579, 38367, 43645, 49445, 55800, 62744, 70312, 78540, 87465, 97125, 107559, 118807, 130910, 143910, 157850
Offset: 0

Views

Author

Wolfdieter Lang, Jun 11 2004

Keywords

Comments

If Y is a 4-subset of an n-set X then, for n>=7, a(n-7) is the number of 4-subsets of X having at most one element in common with Y. - Milan Janjic, Dec 08 2007
In this sequence if we do a forward difference, then the 3rd forward difference when considered as a sequence will be an arithmetic progression with common difference 1. The same way the sequence formed by the 3rd forward difference of A047668 will be an arithmetic progression with common difference 8. [From Gopalakrishnan (gopala498(AT)yahoo.co.in), Jun 05 2010]
Row 4 of the convolution array A213550. [Clark Kimberling, Jun 20 2012]

Crossrefs

Partial sums of A060488.

Programs

Formula

G.f.: (4-3*x)/(1-x)^5.
a(n) = 4*b(n)-3*b(n-1) = (n+16)*binomial(n+3, 3)/4, with b(n):=binomial(n+4, 4)= A000332(n+4, 4).
a(n) = sum_{k=1..n} ( sum_{i=1..k} i*(n-k+4) ). - Wesley Ivan Hurt, Sep 25 2013
Showing 1-6 of 6 results.