cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A238261 Decimal expansion of a constant related to A187235.

Original entry on oeis.org

4, 9, 1, 0, 8, 1, 4, 9, 6, 4, 5, 6, 8, 2, 5, 5, 8, 9, 8, 7, 5, 1, 5, 3, 4, 8, 0, 5, 2, 4, 0, 3, 5, 2, 1, 9, 7, 8, 9, 8, 7, 0, 5, 2, 8, 1, 7, 6, 7, 8, 4, 7, 1, 7, 6, 1, 3, 9, 4, 1, 1, 2, 0, 2, 2, 5, 6, 4, 1, 7, 8, 7, 7, 8, 7, 9, 9, 4, 7, 9, 7, 2, 9, 5, 1, 8, 1, 9, 7, 4, 1, 5, 3, 5, 5, 4, 4, 6, 1, 4, 2, 5, 0, 5, 3
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			4.9108149645682558987515348...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[-(2*LambertW[-1,-1/2/Sqrt[E]])^2/(1+2*LambertW[-1,-1/2/Sqrt[E]]), 105]][[1]]

Formula

Equals lim n->infinity (A187235(n)/(n-1)!)^(1/n).
Equals -(2*LambertW(-1,-exp(-1/2)/2))^2 / (1 + 2*LambertW(-1,-exp(-1/2)/2)).

A187240 Number of ways to place 8 nonattacking bishops on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 32, 12944, 867328, 22522960, 328097824, 3209594096, 23460698496, 137045115696, 670158151296, 2835083100640, 10634260782464, 36033282628832, 111923478184128, 322412415716896, 869530617762304, 2212626780591008, 5346773160475488, 12336574243905648, 27303885052866048
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 16 x^4 (2520 x^22 + 47160 x^21 + 808884 x^20 + 7825113 x^19 + 54648810 x^18 + 265795497 x^17 + 965510650 x^16 + 2638742416 x^15 + 5598377728 x^14 + 9280070520 x^13 + 12189441400 x^12 + 12689244954 x^11 + 10499675700 x^10 + 6853251794 x^9 + 3501200340 x^8 + 1373620536 x^7 + 404231224 x^6 + 85610168 x^5 + 12313860 x^4 + 1085765 x^3 + 49362 x^2 + 797 x + 2) / ((x - 1)^17 (x + 1)^11), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)

Formula

a(n) = n^16/40320 - n^15/1080 + 7n^14/432 - 1153n^13/6480 + 53951n^12/38880 - 187277n^11/22680 + 106928053n^10/2721600 - 13957093n^9/90720 + 182160427n^8/362880 - 8821499n^7/6480 + 1176831457n^6/388800 - 490477369n^5/90720 + 8235592409n^4/1088640 - 726205757n^3/90720 + 1815275047n^2/302400 - 7953419n/2880 + 8491/16 + (-n^10/960 + 5n^9/144 - 307n^8/576 + 1793n^7/360 - 90571n^6/2880 + 201911n^5/1440 - 513865n^4/1152 + 477841n^3/480 - 4271471n^2/2880 + 1269721n/960 - 8491/16)*(-1)^n.
G.f.: -16x^5*(2520x^22 + 47160x^21 + 808884x^20 + 7825113x^19 + 54648810x^18 + 265795497x^17 + 965510650x^16 + 2638742416x^15 + 5598377728x^14 + 9280070520x^13 + 12189441400x^12 + 12689244954x^11 + 10499675700x^10 + 6853251794x^9 + 3501200340x^8 + 1373620536x^7 + 404231224x^6 + 85610168x^5 + 12313860x^4 + 1085765x^3 + 49362x^2 + 797x + 2)/((x-1)^17*(x+1)^11).
a(8) = A002465(8).

A199033 Number of ways to place n non-attacking bishops on a 2 X 2n board.

Original entry on oeis.org

1, 4, 22, 128, 771, 4744, 29618, 186880, 1188679, 7608764, 48953224, 316283264, 2050706932, 13336273528, 86953633242, 568221290496, 3720529001823, 24403423540348, 160314652983158, 1054635453261568, 6946703172803003, 45809043607167328, 302395650703501688
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 02 2011

Keywords

Crossrefs

Programs

  • Magma
    [(&+[Binomial(2*n-j+1,j)*Binomial(n+j+1,n-j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Feb 19 2019
    
  • Mathematica
    Table[Sum[Binomial[2n-j+1,j]*Binomial[n+j+1,n-j],{j,0,n}],{n,0,25}]
  • Maxima
    A199033(n):=sum(binomial(n+k+1, n-k)*binomial(2*n-k+1,k),k,0,n)$ makelist(A199033(n),n,0,22); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    {a(n)=sum(k=0, n, binomial(n+k+1, n-k)*binomial(2*n-k+1, k))}
    
  • PARI
    {a(n)=local(G=1); for(i=0, n, G=1+x*G^3+O(x^(n+1))); polcoeff(G^2/(1-2*x*G^2-3*x^2*G^4), n)} \\ Paul D. Hanna, Nov 14 2012
    for(n=0,25,print1(a(n),", "))
    
  • Sage
    [sum(binomial(2*n-j+1,j)*binomial(n+j+1,n-j) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Feb 19 2019

Formula

Recurrence: (112*n^4 + 968*n^3 + 3048*n^2 + 4136*n + 2040)*a(n+2) = (728*n^4 + 5914*n^3 + 17550*n^2 + 22510*n + 10530)*a(n+1) + (189*n^4 + 1539*n^3 + 4578*n^2 + 5886*n + 2760)*a(n). - Vaclav Kotesovec, Oct 30 2011
a(n) = Sum_{j=0..n} (binomial(2n-j+1,j)*binomial(n+j+1,n-j)).
a(n) ~ 3^(3n+4)/2^(2n+5)/sqrt(3*Pi*n).
Self-convolution of A219197. - Paul D. Hanna, Nov 14 2012
G.f.: A(x) = G(x)^2 / (1 - 2*x*G(x)^2 - 3*x^2*G(x)^4), where G(x) = 1 + x*G(x)^3 = g.f. of A001764. - Paul D. Hanna, Nov 14 2012
a(n) = [x^n] 1/((1 - x^2)*(1 - x)^(2*n+2)). - Ilya Gutkovskiy, Oct 25 2017

Extensions

Offset changed to 0 and a(0)=1 added by Paul D. Hanna, Nov 14 2012

A187241 Number of ways to place 9 nonattacking bishops on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 1600, 389312, 22057472, 565532992, 8611750848, 90564534336, 720227187456, 4603893554496, 24675964279680, 114402835995392, 469601097840640, 1737913582100864, 5882030372643968, 18417596366384512, 53854324059153920, 148209412582029184, 386390343290393024, 959556901097413696
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 64 x^5 (5670 x^25 + 116100 x^24 + 2282283 x^23 + 25883910 x^22 + 220244661 x^21 + 1330673229 x^20 + 6121839129 x^19 + 21511823232 x^18 + 59645434477 x^17 + 131494649245 x^16 + 234424379246 x^15 + 339339084372 x^14 + 401937236082 x^13 + 389328811002 x^12 + 308645316626 x^11 + 199052247464 x^10 + 103780570480 x^9 + 43151321222 x^8 + 14078209111 x^7 + 3508317590 x^6 + 644755881 x^5 + 82579449 x^4 + 6782181 x^3 + 308200 x^2 + 5933 x + 25) / ((x - 1)^19 (x + 1)^13), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)

Formula

a(n) = n^18/362880 - n^17/7560 + 181n^16/60480 - 14509n^15/340200 + 2101n^14/4860 - 101071n^13/30240 + 112406401n^12/5443200 - 143351879n^11/1360800 + 2465350549n^10/5443200 - 14081834n^9/8505 + 55888723201n^8/10886400 - 6055816813n^7/453600 + 155816526107n^6/5443200 - 13489156949n^5/272160 + 183801705823n^4/2721600 - 15816472541n^3/226800 + 30820237351n^2/604800 - 919392091n/40320 + 1101239/256 + (-n^12/5760 + 11n^11/1440 - 113n^10/720 + 51793n^9/25920 - 202873n^8/11520 + 3428791n^7/30240 - 1050169n^6/1920 + 8590259n^5/4320 - 1034689n^4/192 + 68481311n^3/6480 - 81534479n^2/5760 + 465686363n/40320 - 1101239/256)*(-1)^n.
G.f.: -64x^6*(5670x^25 + 116100x^24 + 2282283x^23 + 25883910x^22 + 220244661x^21 + 1330673229x^20 + 6121839129x^19 + 21511823232x^18 + 59645434477x^17 + 131494649245x^16 + 234424379246x^15 + 339339084372x^14 + 401937236082x^13 + 389328811002x^12 + 308645316626x^11 + 199052247464x^10 + 103780570480x^9 + 43151321222x^8 + 14078209111x^7 + 3508317590x^6 + 644755881x^5 + 82579449x^4 + 6782181x^3 + 308200x^2 + 5933x + 25)/((x-1)^19*(x+1)^13).
a(9) = A002465(9).

A187242 Number of ways to place 10 nonattacking bishops on an n X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 64, 81184, 12448832, 627961728, 15915225216, 251806066272, 2814607288320, 24088436720256, 166645918174848, 969258913391552, 4878776675787392, 21731689658569984, 87161301448676352, 319192073724720448, 1079363369445639936, 3401826465353378560, 10070308904424957632, 28183638842590122720
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 07 2011

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 32 x^5 (113400 x^29 + 2518560 x^28 + 55426428 x^27 + 713122128 x^26 + 7133734665 x^25 + 51575533686 x^24 + 289157705424 x^23 + 1253334719652 x^22 + 4339842816598 x^21 + 12089938835312 x^20 + 27595185140132 x^19 + 51899069651452 x^18 + 81237872407883 x^17 + 106097483667238 x^16 + 116126611566624 x^15 + 106417824457960 x^14 + 81632991696988 x^13 + 52161861060464 x^12 + 27621327391332 x^11 + 11998025297736 x^10 + 4224689442543 x^9 + 1183463783138 x^8 + 257650398544 x^7 + 42074808244 x^6 + 4911799606 x^5 + 379785344 x^4 + 17289788 x^3 + 373804 x^2 + 2525 x + 2) / ((x - 1)^21 (x + 1)^15), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)

Formula

a(n) = n^20/3628800 - n^19/60480 + 341n^18/725760 - 45949n^17/5443200 + 235433n^16/2177280 - 308291n^15/291600 + 14982871n^14/1814400 - 43484267n^13/816480 + 175706737n^12/604800 - 2444962049n^11/1796256 + 30003106793n^10/5443200 - 44899907477n^9/2332800 + 9919713547n^8/172800 - 18390588424n^7/127575 + 217346831209n^6/725760 - 8233418533709n^5/16329600 + 104224385179n^4/155520 - 14600765627n^3/21600 + 583132621007n^2/1209600 - 46669993739n/221760 + 19990663/512 + (-n^14/40320 + n^13/720 - 1267n^12/34560 + 15721n^11/25920 - 730663n^10/103680 + 5532407n^9/90720 - 98193341n^8/241920 + 10640393n^7/5040 - 99209431n^6/11520 + 1417368727n^5/51840 - 686809973n^4/10368 + 2144839679n^3/18144 - 1683044471n^2/11520 + 2242597633n/20160 - 19990663/512)*(-1)^n.
G.f.: -32x^6*(113400x^29 + 2518560x^28 + 55426428x^27 + 713122128x^26 + 7133734665x^25 + 51575533686x^24 + 289157705424x^23 + 1253334719652x^22 + 4339842816598x^21 + 12089938835312x^20 + 27595185140132x^19 + 51899069651452x^18 + 81237872407883x^17 + 106097483667238x^16 + 116126611566624x^15 + 106417824457960x^14 + 81632991696988x^13 + 52161861060464x^12 + 27621327391332x^11 + 11998025297736x^10 + 4224689442543x^9 + 1183463783138x^8 + 257650398544x^7 + 42074808244x^6 + 4911799606x^5 + 379785344x^4 + 17289788x^3 + 373804x^2 + 2525x + 2)/((x-1)^21*(x+1)^15).
a(10) = A002465(10).

A189790 Number of ways to place n nonattacking bishops on an n X n toroidal board.

Original entry on oeis.org

1, 4, 6, 64, 120, 2304, 5040, 147456, 362880, 14745600, 39916800, 2123366400, 6227020800, 416179814400, 1307674368000, 106542032486400, 355687428096000, 34519618525593600, 121645100408832000, 13807847410237440000
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 27 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[If[EvenQ[n],2^n*((n/2)!)^2,n!],{n,1,20}]
    Table[n!*SeriesCoefficient[1/(1-x)+x*ArcSin[x]/(1-x^2)^(3/2), {x,0,n}], {n,1,25}] (* Vaclav Kotesovec, Sep 26 2012 *)

Formula

a(n) = 2^n*((n/2)!)^2 if n is even and a(n) = n! if n is odd.
a(n) = n*(2*n-3)*a(n-2)-(n-3)*n*(n-2)^2*a(n-4). [Vaclav Kotesovec, Sep 26 2012]
E.g.f.: 1/(1-x)+x*arcsin(x)/(1-x^2)^(3/2). [Vaclav Kotesovec, Sep 26 2012]

A189791 Number of ways to place n nonattacking bishops on an 2n x 2n toroidal board.

Original entry on oeis.org

4, 80, 2688, 132864, 8647680, 699678720, 67711795200, 7629571031040, 981168437329920, 141817953779712000, 22760391875493888000, 4016046336733347840000, 772743693378451931136000, 161027573368536472485888000, 36127883615009765477842944000
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 27 2011

Keywords

Crossrefs

Programs

  • Mathematica
    Table[2^n*n!*Sum[Binomial[n,i]^3,{i,0,n}],{n,1,20}]

Formula

a(n)=2^n*n!*Sum[Binomial[n,i]^3,{i,0,n}].
Asymptotic: a(n) ~ 2^(4n+1)*(n-1)!/Pi/sqrt(3) ~ 2^(4n+1)*n^n/exp(n)*sqrt(2/(3*Pi*n)).
Recurrence: a(n) = ((14*n^2-14*n+4)*a(n-1) + 32*(n-1)^3*a(n-2))/n.

A274106 Triangle read by rows: T(n,k) = total number of configurations of k nonattacking bishops on the white squares of an n X n chessboard (0 <= k <= n-1+[n=0]).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 2, 1, 8, 14, 4, 1, 12, 38, 32, 4, 1, 18, 98, 184, 100, 8, 1, 24, 188, 576, 652, 208, 8, 1, 32, 356, 1704, 3532, 2816, 632, 16, 1, 40, 580, 3840, 12052, 16944, 9080, 1280, 16, 1, 50, 940, 8480, 38932, 89256, 93800, 37600, 3856, 32, 1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 2016

Keywords

Comments

From Eder G. Santos, Dec 16 2024: (Start)
The sequence counts every possible nonattacking configuration of k bishops on the white squares of an n X n chess board.
It is assumed that the n X n chess board has a black square in the upper left corner.
(End)

Examples

			Triangle begins:
  1;
  1;
  1,  2;
  1,  4,    2;
  1,  8,   14,     4;
  1, 12,   38,    32,     4;
  1, 18,   98,   184,   100,      8;
  1, 24,  188,   576,   652,    208,      8;
  1, 32,  356,  1704,  3532,   2816,    632,     16;
  1, 40,  580,  3840, 12052,  16944,   9080,   1280,     16;
  1, 50,  940,  8480, 38932,  89256,  93800,  37600,   3856,   32;
  1, 60, 1390, 16000, 98292, 322848, 540080, 412800, 116656, 7744, 32;
  ...
From _Eder G. Santos_, Dec 16 2024: (Start)
For example, for n = 3, k = 2, the T(3,2) = 2 nonattacking configurations are:
  +---+---+---+   +---+---+---+
  |   | B |   |   |   |   |   |
  +---+---+---+   +---+---+---+
  |   |   |   | , | B |   | B |
  +---+---+---+   +---+---+---+
  |   | B |   |   |   |   |   |
  +---+---+---+   +---+---+---+
(End)
		

Crossrefs

Columns k=0-1 give: A000012, A007590.
Alternate rows give A088960.
Row sums are A216078(n+1).
T(2n,n) gives A191236.
T(2n+1,n) gives A217900(n+1).
T(n+1,n) gives A060546.
Cf. A274105 (black squares), A288182, A201862, A002465.

Programs

  • Maple
    with(combinat): with(gfun):
    T := n -> add(stirling2(n+1,n+1-k)*x^k, k=0..n):
    # bishops on white squares
    bish := proc(n) local m,k,i,j,t1,t2; global T;
        if n=0 then return [1] fi;
        if (n mod 2) = 0 then m:=n/2;
            t1:=add(binomial(m,k)*T(2*m-1-k)*x^k, k=0..m);
        else
            m:=(n-1)/2;
            t1:=add(binomial(m,k)*T(2*m-k)*x^k, k=0..m+1);
        fi;
        seriestolist(series(t1,x,2*n+1));
    end:
    for n from 0 to 12 do lprint(bish(n)); od:
  • Mathematica
    T[n_] := Sum[StirlingS2[n+1, n+1-k]*x^k, {k, 0, n}];
    bish[n_] := Module[{m, t1, t2}, If[Mod[n, 2] == 0,
       m = n/2;     t1 = Sum[Binomial[m, k]*T[2*m-1-k]*x^k, {k, 0, m}],
       m = (n-1)/2; t1 = Sum[Binomial[m, k]*T[2*m - k]*x^k, {k, 0, m+1}]];
    CoefficientList[t1 + O[x]^(2*n+1), x]];
    Table[bish[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Jul 25 2022, after Maple code *)
  • SageMath
    def stirling2_negativek(n, k):
      if k < 0: return 0
      else: return stirling_number2(n, k)
    print([sum([binomial(floor(n/2), j)*stirling2_negativek(n-j, n-k) for j in [0..k]]) for n in [0..10] for k in [0..n-1+kronecker_delta(n,0)]]) # Eder G. Santos, Dec 01 2024

Formula

From Eder G. Santos, Dec 01 2024: (Start)
T(n,k) = Sum_{j=0..k} binomial(floor(n/2),j) * Stirling2(n-j,n-k).
T(n,k) = T(n-1,k) + (n-k+1-A000035(n)) * T(n-1,k-1), T(n,0) = 1, T(0,k) = delta(k,0). (End)

Extensions

T(0,0) prepended by Eder G. Santos, Dec 01 2024

A238262 Decimal expansion of a multiplicative constant related to A187235.

Original entry on oeis.org

2, 4, 2, 5, 2, 1, 9, 1, 2, 8, 1, 5, 2, 3, 5, 9, 8, 5, 9, 4, 9, 3, 2, 1, 0, 8, 0, 3, 8, 6, 3, 9, 2, 0, 2, 9, 5, 1, 3, 8, 3, 2, 8, 7, 2, 3, 5, 3, 2, 7, 6, 1, 2, 1, 1, 5, 4, 1, 0, 1, 7, 8, 0, 6, 6, 8, 7, 0, 5, 1, 9, 4, 8, 3, 8, 5, 5, 0, 9, 5, 1, 1, 5, 9, 2, 0, 4, 4, 5, 3, 9, 3, 9, 9, 8, 0, 6, 5, 5, 0, 4, 2, 0, 4
Offset: 0

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			0.242521912815235985949321...
		

Crossrefs

Formula

Equals lim n->infinity A187235(n) / ((n-1)! * A238261^n).

A378590 Total number of ways to place k nonattacking bishops on an n X n chess board. Triangle T(n,k) read by rows (0 <= k <= 2*n-[n>0]-[n>1]).

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 1, 9, 26, 26, 8, 1, 16, 92, 232, 260, 112, 16, 1, 25, 240, 1124, 2728, 3368, 1960, 440, 32, 1, 36, 520, 3896, 16428, 39680, 53744, 38368, 12944, 1600, 64, 1, 49, 994, 10894, 70792, 282248, 692320, 1022320, 867328, 389312, 81184, 5792, 128
Offset: 0

Views

Author

Eder G. Santos, Dec 01 2024

Keywords

Comments

The sequence counts every possible nonattacking configuration of k bishops on an n x n chess board.

Examples

			Triangle begins:
  1;
  1  1;
  1  4   4;
  1  9  26    26     8;
  1 16  92   232   260    112     16;
  1 25 240  1124  2728   3368   1960     440     32;
  1 36 520  3896 16428  39680  53744   38368  12944   1600    64;
  1 49 994 10894 70792 282248 692320 1022320 867328 389312 81184 5792 128;
  ...
For example, for n = 2, k=2, the T(2,2)=4 nonattacking configurations are:
  +---+---+   +---+---+   +---+---+   +---+---+
  | B | B |   | B |   |   |   | B |   |   |   |
  +---+---+ , +---+---+ , +---+---+ , +---+---+
  |   |   |   | B |   |   |   | B |   | B | B |
  +---+---+   +---+---+   +---+---+   +---+---+
		

Crossrefs

Columns k=0-1 give: A000012, A000290.
Columns k=2-10 for n>=1 give: A172123, A172124, A172127, A172129, A176886, A187239, A187240, A187241, A187242.
Main diagonal T(n,n) gives A002465.
Row sums give A201862.
Cf. A000079.

Programs

  • SageMath
    def stirling2_negativek(n,k):
      if k < 0: return 0
      else: return stirling_number2(n,k)
    print([sum([sum([binomial(floor(n/2),i)*stirling2_negativek(n-i,n-j)*sum([binomial(ceil(n/2),l)*stirling2_negativek(n-l,n-k+j) for l in [0..k-j]]) for i in [0..j]]) for j in [0..k]]) for n in [0..10] for k in [0..2*n-2+kronecker_delta(n,1)+2*kronecker_delta(n,0)]])

Formula

T(n,k) = Sum_{j=0..k} (Sum_{i=0..j} binomial(floor(n/2),i) * Stirling2(n-i,n-j)) * (Sum_{l=0..k-j} binomial(ceiling(n/2),l) * Stirling2(n-l,n-k+j)).
T(n,2*n-2+delta(n,1)+2*delta(n,0)) = A000079(n)-delta(n,1).
Previous Showing 11-20 of 23 results. Next