cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 160 results. Next

A068191 Numbers n such that A067734(n)=0; complement of A002473; at least one prime-factor of n is larger than 7, it has 2 decimal digits.

Original entry on oeis.org

11, 13, 17, 19, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 109, 110, 111, 113, 114
Offset: 1

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Comments

Also numbers n such that A198487(n) = 0 and A107698(n) = 0. - Jaroslav Krizek, Nov 04 2011
A086299(a(n)) = 0. - Reinhard Zumkeller, Apr 01 2012
A262401(a(n)) < a(n). - Reinhard Zumkeller, Sep 25 2015
Numbers not in A007954. - Mohammed Yaseen, Sep 13 2022

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a068191 n = a068191_list !! (n-1)
    a068191_list = map (+ 1) $ elemIndices 0 a086299_list
    -- Reinhard Zumkeller, Apr 01 2012
    
  • Mathematica
    Select[Range@120, Last@Map[First, FactorInteger@#] > 7 &] (* Vincenzo Librandi, Sep 19 2016 *)
  • Python
    from sympy import integer_log
    def A068191(n):
        def f(x):
            c = n
            for i in range(integer_log(x,7)[0]+1):
                i7 = 7**i
                m = x//i7
                for j in range(integer_log(m,5)[0]+1):
                    j5 = 5**j
                    r = m//j5
                    for k in range(integer_log(r,3)[0]+1):
                        c += (r//3**k).bit_length()
            return c
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Sep 16 2024

A085126 Multiples of 3 which are members of A002473. Or multiples of 3 with the largest prime divisor < 10.

Original entry on oeis.org

3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 36, 42, 45, 48, 54, 60, 63, 72, 75, 81, 84, 90, 96, 105, 108, 120, 126, 135, 144, 147, 150, 162, 168, 180, 189, 192, 210, 216, 225, 240, 243, 252, 270, 288, 294, 300, 315, 324, 336, 360, 375, 378, 384, 405, 420, 432, 441, 450
Offset: 1

Views

Author

Amarnath Murthy, Jul 06 2003

Keywords

Crossrefs

Programs

  • Mathematica
    Select[3*Range[200],FactorInteger[#][[-1,1]]<10&] (* Harvey P. Dale, Apr 10 2019 *)
  • Python
    from sympy import integer_log
    def A085126(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,7)[0]+1):
                for j in range(integer_log(m:=x//7**i,5)[0]+1):
                    for k in range(integer_log(r:=m//5**j,3)[0]+1):
                        c -= (r//3**k).bit_length()
            return c
        return bisection(f,n,n)*3 # Chai Wah Wu, Sep 17 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    def A085126gen(): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], [2, 3, 5, 7]
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield 3*v
                oldv = v
                for p in psmooth_primes:
                        heapq.heappush(h, v*p)
    print(list(islice(A085126gen(), 65))) # Michael S. Branicky, Sep 17 2024

Formula

a(n) = 3*A002473(n). - Chai Wah Wu, Sep 18 2024
Sum_{n>=1} 1/a(n) = 35/24. - Amiram Eldar, Sep 23 2024

Extensions

More terms from David Wasserman, Jan 28 2005
Offset changed to 1 by Michael S. Branicky, Sep 17 2024

A085127 Multiples of 4 which are members of A002473. Or multiples of 4 with the largest prime divisor < 10.

Original entry on oeis.org

4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 48, 56, 60, 64, 72, 80, 84, 96, 100, 108, 112, 120, 128, 140, 144, 160, 168, 180, 192, 196, 200, 216, 224, 240, 252, 256, 280, 288, 300, 320, 324, 336, 360, 384, 392, 400, 420, 432, 448, 480, 500, 504, 512, 540, 560, 576
Offset: 1

Views

Author

Amarnath Murthy, Jul 06 2003

Keywords

Crossrefs

Programs

  • Maple
    N:= 1000: # to get all terms <= N
    sort([seq(seq(seq(seq(2^a*3^b*5^c*7^d, d=0..floor(log[7](N/(2^a*3^b*5^c)))),c=0..floor(log[5](N/(2^a*3^b)))), b=0..floor(log[3](N/2^a))), a=2..floor(log[2](N)))]); # Robert Israel, Mar 18 2018
  • Mathematica
    Select[4Range[150],Last[FactorInteger[#]][[1]]<10&] (* Harvey P. Dale, Aug 24 2011 *)

Formula

a(n) = 4*A002473(n). - Robert Israel, Mar 18 2018
Sum_{n>=1} 1/a(n) = 35/32. - Amiram Eldar, Sep 23 2024

Extensions

More terms from David Wasserman, Jan 28 2005
Offset changed by Robert Israel, Mar 18 2018

A085128 Multiples of 5 which are members of A002473. Or multiples of 5 with the largest prime divisor <= 7.

Original entry on oeis.org

5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 75, 80, 90, 100, 105, 120, 125, 135, 140, 150, 160, 175, 180, 200, 210, 225, 240, 245, 250, 270, 280, 300, 315, 320, 350, 360, 375, 400, 405, 420, 450, 480, 490, 500, 525, 540, 560, 600, 625, 630, 640, 675, 700
Offset: 1

Views

Author

Amarnath Murthy, Jul 06 2003

Keywords

Crossrefs

Intersection of A008587 (multiples of 5) and A002473 (7-smooth numbers).

Programs

  • Mathematica
    With[{p = Prime[Range[4]]}, 5 * Select[Range[140], Times @@ (p^IntegerExponent[#, p]) == # &]] (* Amiram Eldar, Sep 22 2024 *)
  • PARI
    lista(nn) = {for (n=1, nn, if (vecmax(factor(5*n)[,1]) <= 7, print1(5*n, ", ")););} \\ Michel Marcus, Aug 15 2017

Formula

a(n) = 5*A002473(n). - Michel Marcus, Aug 15 2017
Sum_{n>=1} 1/a(n) = 7/8. - Amiram Eldar, Sep 22 2024

Extensions

More terms from David Wasserman, Jan 28 2005
Offset corrected by Michel Marcus, Aug 15 2017

A326318 Numbers that cannot be written as a difference of 7-smooth numbers (A002473).

Original entry on oeis.org

1849, 2309, 2411, 2483, 2507, 2531, 2629, 2711, 2753, 2843, 2851, 2921, 2941, 3139, 3161, 3167, 3181, 3217, 3229, 3251, 3287, 3289, 3293, 3323, 3379, 3481, 3487, 3541, 3601, 3623, 3653, 3697, 3698, 3709, 3737, 3739, 3803, 3827, 3859, 3877, 3901, 3923, 3947
Offset: 1

Views

Author

Keywords

Comments

Terms were found by generating in sequential order the 7-smooth numbers up to some limit and collecting the differences. The first 100 candidates k were then proved to be correct by showing that each of the following congruences holds:
<2> +- k !== <3, 5, 7> mod 31487336959,
<3> +- k !== <2, 5, 7> mod 121328339431,
<2, 3> +- k !== <5, 7> mod 5699207989579,
<5> +- k !== <2, 3, 7> mod 1206047658673,
<2, 5> +- k !== <3, 7> mod 11174958041,
<3, 5> +- k !== <2, 7> mod 31487336959,
<7> +- k !== <2, 3, 5> mod 1116870318707,
where represents any element in the subgroup generated by a,b,... of the multiplicative subgroup modulo m. For a discussion iof this method of proof see A308247.

Examples

			1849 = A308247(4) cannot be written as the difference of 7-smooth numbers. All smaller numbers can; for example, 281 = 2^5*3^2 - 7, 289 = 2*3*7^2 - 5, ..., 1847 = 3*5^4 - 2^2*7.
		

Crossrefs

Cf. A002473 (7-smooth numbers).
Cf. numbers not the difference of p-smooth numbers for other values of p: A101082 (p=2), A290365 (p=3), A308456 (p=5), A326319 (p=11), A326320 (p=13).
Cf. A308247.

A372401 Position of 210^n among 7-smooth numbers A002473.

Original entry on oeis.org

1, 68, 547, 2119, 5817, 13008, 25412, 45078, 74409, 116147, 173379, 249532, 348375, 474018, 630922, 823885, 1058051, 1338898, 1672260, 2064302, 2521535, 3050825, 3659361, 4354687, 5144682, 6037582, 7041946, 8166692, 9421074, 10814695, 12357491, 14059744, 15932086, 17985473
Offset: 0

Views

Author

Michael De Vlieger, Jun 03 2024

Keywords

Comments

Also position of 210^(n+1) in A147571.

Crossrefs

Programs

  • Mathematica
    Table[
      Sum[Floor@ Log[7, 210^n/(2^i*3^j*5^k)] + 1,
        {i, 0, Log[2, 210^n]},
        {j, 0, Log[3, 210^n/2^i]},
        {k, 0, Log[5, 210^n/(2^i*3^j)]}],
      {n, 0, 12}]
  • Python
    import heapq
    from itertools import islice
    from sympy import primerange
    def A372401gen(p=7): # generator for p-smooth terms
        v, oldv, psmooth_primes, = 1, 0, list(primerange(1, p+1))
        h = [(1, [0]*len(psmooth_primes))]
        idx = {psmooth_primes[i]:i for i in range(len(psmooth_primes))}
        loc = 0
        while True:
            v, e = heapq.heappop(h)
            if v != oldv:
                loc += 1
                if len(set(e)) == 1:
                    yield loc
                oldv = v
                for p in psmooth_primes:
                    vp, ep = v*p, e[:]
                    ep[idx[p]] += 1
                    heapq.heappush(h, (v*p, ep))
    print(list(islice(A372401gen(), 15))) # Michael S. Branicky, Jun 05 2024
    
  • Python
    from sympy import integer_log
    def A372401(n):
        c, x = 0, 210**n
        for i in range(integer_log(x,7)[0]+1):
            for j in range(integer_log(m:=x//7**i,5)[0]+1):
                for k in range(integer_log(r:=m//5**j,3)[0]+1):
                    c += (r//3**k).bit_length()
        return c # Chai Wah Wu, Sep 16 2024

Formula

a(n) ~ c * n^4, where c = log(210)^4/(24*log(2)*log(3)*log(5)*log(7)) = 14.282278766622... - Vaclav Kotesovec and Amiram Eldar, Sep 22 2024

A280249 a(n) = smallest k with digit product A002473(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 25, 26, 27, 35, 28, 29, 45, 37, 38, 55, 39, 47, 56, 48, 57, 49, 58, 67, 59, 68, 77, 255, 69, 78, 256, 79, 88, 257, 89, 355, 258, 99, 267, 259, 268, 277, 455, 357, 269, 278, 358, 555, 279, 288, 359, 457, 289, 377, 556, 458, 299, 378, 557, 459, 379, 388, 477, 558, 567, 389, 478, 559, 568, 399, 577, 2555, 479
Offset: 1

Views

Author

David W. Wilson, Dec 29 2016

Keywords

Comments

A007954(a(n)) = A002473(n).

Crossrefs

A323050 Numbers that cannot be written as a sum of two or fewer 7-smooth numbers (A002473).

Original entry on oeis.org

311, 479, 551, 619, 622, 671, 719, 839, 851, 933, 937, 958, 1102, 1103, 1117, 1151, 1193, 1238, 1244, 1291, 1319, 1342, 1391, 1433, 1437, 1438, 1487, 1499, 1511, 1531, 1553, 1555, 1559, 1619, 1651, 1653, 1667, 1678, 1679, 1697, 1857, 1866, 1871, 1874, 1913, 1916, 1919, 1933, 1937, 1991, 2011, 2013, 2077, 2113, 2117, 2157
Offset: 1

Views

Author

Carlos Alves, Jan 03 2019

Keywords

Comments

Numbers that are not of the form (2^i * 3^j * 5^k * 7^l)*a + (2^m * 3^n * 5^p * 7^q)*b, with i,j,k,m,n,p >= 0, and a,b = 0 or 1. The first number excluded is 311.
These numbers are also included in A323046 and A323049.

Crossrefs

Similar to A323046 (for 3-smooth) and A323049 (for 5-smooth). Cf. A002473.

Programs

  • Mathematica
    f[n_] := Union@Flatten@Table[2^a*3^b*5^c*7^d, {a, 0, Log2[n]}, {b, 0, Log[3, n/2^a]}, {c, 0, Log[5, n/(2^a*3^b)]}, {d, 0, Log[7, n/(2^a*3^b*5^c)]}];
    b = Block[{nn = 3000, s}, s = f[nn]; {0, 1}~Join~Select[Union@Flatten@Outer[Plus, s, s], # <= nn &]];
    Complement[Range[3000], b]

A085133 Numbers k such that k and its digit reversal are both 7-smooth (A002473).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18, 20, 21, 24, 27, 30, 36, 40, 42, 45, 48, 50, 54, 60, 63, 70, 72, 80, 81, 84, 90, 100, 120, 144, 180, 200, 210, 240, 252, 270, 288, 300, 343, 360, 400, 405, 420, 441, 450, 480, 500, 504, 525, 540, 576, 600, 630, 675, 686, 700, 720
Offset: 1

Views

Author

Amarnath Murthy, Jul 06 2003

Keywords

Comments

Though a large number of initial terms match, it is different from A005349.
From Robert Israel, Mar 18 2018: (Start)
If n is a term, then so are 10^k*n for all k.
Is a(147)=84672 the last term not divisible by 10? If so, then a(n+43)=10*a(n) for n >= 105. (End)
All terms a(147..10000) are divisible by 10; a(10000) has 235 decimal digits. - Michael S. Branicky, Sep 21 2024

Crossrefs

Programs

  • Maple
    N:= 10^3: # to get all terms <= N (which should be a power of 10)
    revdigs:= proc(n) local L;
      L:= convert(n,base,10);
      add(10^(i-1)*L[-i],i=1..nops(L))
    end proc:
    S:= {seq(seq(seq(seq(2^a*3^b*5^c*7^d, d=0..floor(log[7](N/(2^a*3^b*5^c)))),c=0..floor(log[5](N/(2^a*3^b)))), b=0..floor(log[3](N/2^a))), a=0..floor(log[2](N)))}:
    S:= S intersect map(revdigs, S):
    S:= map(t -> seq(t*10^i, i=0..ilog10(N/t)), S):
    sort(convert(S,list)); # Robert Israel, Mar 18 2018
  • Python
    import heapq
    from itertools import islice
    from sympy import factorint
    def is7smooth(n):
        for p in [2, 3, 5, 7]:
            while n%p == 0: n //= p
        return n == 1
    def agen(): # generator of terms
        v, oldv, h = 1, 0, [1]
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                if is7smooth(int(str(v)[::-1])):
                    yield v
                oldv = v
                for p in [2, 3, 5, 7]:
                    heapq.heappush(h, v*p)
    print(list(islice(agen(), 65))) # Michael S. Branicky, Sep 20 2024

Extensions

More terms from David Wasserman, Jan 28 2005

A085630 Number of n-digit 7-smooth numbers (A002473).

Original entry on oeis.org

0, 9, 36, 95, 197, 356, 579, 882, 1272, 1767, 2381, 3113, 3984, 5002, 6187, 7545, 9081, 10815, 12759, 14927, 17323, 19960, 22853, 26015, 29458, 33188, 37222, 41568, 46245, 51254, 56618, 62338, 68437, 74917, 81793, 89083, 96786, 104926, 113511
Offset: 0

Views

Author

Jason Earls and Amarnath Murthy, Jul 10 2003

Keywords

Crossrefs

Programs

  • PARI
    \\ Here b(n) is A071604.
    b(m)={sum(i=0, logint(m,7), my(p=m\7^i); sum(j=0, logint(p,5), my(q=p\5^j); sum(k=0, logint(q,3), logint(q\3^k,2)+1 )))}
    a(n)={if(n>0, b(10^n-1))-if(n>1, b(10^(n-1)-1))} \\ Andrew Howroyd, Sep 20 2024

Formula

From Andrew Howroyd, Sep 20 2024: (Start)
a(n) = A106600(n) - A106600(n-1) for n > 0.
a(n) = A071604(10^n-1) - A071604(10^(n-1)-1) for n > 1. (End)

Extensions

More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Nov 18 2004
Name changed by Andrew Howroyd, Sep 20 2024
Showing 1-10 of 160 results. Next