cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 160 results. Next

A080197 13-smooth numbers: numbers whose prime divisors are all <= 13.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 52, 54, 55, 56, 60, 63, 64, 65, 66, 70, 72, 75, 77, 78, 80, 81, 84, 88, 90, 91, 96, 98, 99, 100, 104, 105, 108, 110, 112, 117, 120
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2003

Keywords

Comments

Numbers of the form 2^r*3^s*5^t*7^u*11^v*13^w with r, s, t, u, v, w >= 0.

Examples

			33 = 3*11 and 39 = 3*13 are terms but 34 = 2*17 is not.
		

Crossrefs

Cf. A000079, A080196. For p-smooth numbers with other values of p, see A003586, A051037, A002473, A051038, A080681, A080682, A080683.

Programs

  • Magma
    [n: n in [1..150] | PrimeDivisors(n) subset PrimesUpTo(13)]; // Bruno Berselli, Sep 24 2012
    
  • Mathematica
    mx = 120; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l*11^m*13^n, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}, {m, 0, Log[11, mx/(2^i*3^j*5^k*7^l)]}, {n, 0, Log[13, mx/(2^i*3^j*5^k*7^l*11^m)]}] (* Robert G. Wilson v, Aug 17 2012 *)
  • PARI
    test(n)=m=n; forprime(p=2,13, while(m%p==0,m=m/p)); return(m==1)
    for(n=1,200,if(test(n),print1(n",")))
    
  • PARI
    is_A080197(n,p=13)=n<=p||vecmax(factor(n,p+1)[,1])<=p \\ M. F. Hasler, Jan 16 2015
    
  • PARI
    list(lim,p=13)=if(p==2, return(powers(2, logint(lim\1,2)))); my(v=[],q=precprime(p-1),t=1); for(e=0,logint(lim\=1,p), v=concat(v, list(lim\t,q)*t); t*=p); Set(v) \\ Charles R Greathouse IV, Apr 16 2020
    
  • Python
    import heapq
    from itertools import islice
    from sympy import primerange
    def agen(p=13): # generate all p-smooth terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(agen(), 69))) # Michael S. Branicky, Nov 20 2022
    
  • Python
    from sympy import integer_log, prevprime
    def A080197(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,13)
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p <= 13} p/(p-1) = (2*3*5*7*11*13)/(1*2*4*6*10*12) = 1001/192. - Amiram Eldar, Sep 22 2020

A080682 19-smooth numbers: numbers whose prime divisors are all <= 19.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56, 57, 60, 63, 64, 65, 66, 68, 70, 72, 75, 76, 77, 78, 80, 81, 84, 85, 88, 90, 91, 95, 96, 98, 99, 100
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Crossrefs

For p-smooth numbers with other values of p, see A003586, A051037, A002473, A051038, A080197, A080681, A080683.

Programs

  • Magma
    [n: n in [1..100] | PrimeDivisors(n) subset PrimesUpTo(19)]; // Bruno Berselli, Sep 24 2012
    
  • Mathematica
    mx = 120; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l*11^m*13^n*17^o*19^p, {i, 0, Log[2,mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]},{l, 0, Log[7, mx/(2^i*3^j*5^k)]}, {m, 0, Log[11, mx/(2^i*3^j*5^k*7^l)]}, {n, 0, Log[13, mx/(2^i*3^j*5^k*7^l*11^m)]}, {o, 0, Log[17, mx/(2^i*3^j*5^k*7^l*11^m*13^n)]}, {p, 0, Log[19, mx/(2^i*3^j*5^k*7^l*11^m*13^n*17^o)]}] (* Robert G. Wilson v, Jan 19 2016 *)
    Select[Range[100],Max[FactorInteger[#][[All,1]]]<20&] (* Harvey P. Dale, Sep 20 2018 *)
  • PARI
    test(n)= {m=n; forprime(p=2,19, while(m%p==0,m=m/p)); return(m==1)}
    for(n=1,200,if(test(n),print1(n",")))
    
  • PARI
    list(lim,p=19)=if(p==2, return(powers(2, logint(lim\1,2)))); my(v=[],q=precprime(p-1),t=1); for(e=0,logint(lim\=1,p), v=concat(v, list(lim\t,q)*t); t*=p); Set(v) \\ Charles R Greathouse IV, Apr 16 2020
    
  • Python
    import heapq
    from itertools import islice
    from sympy import primerange
    def agen(p=19): # generate all p-smooth terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(agen(), 72))) # Michael S. Branicky, Nov 20 2022
    
  • Python
    from sympy import integer_log
    def A080682(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,19)
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p <= 19} p/(p-1) = (2*3*5*7*11*13*17*19)/(1*2*4*6*10*12*16*18) = 323323/55296. - Amiram Eldar, Sep 22 2020

A080683 23-smooth numbers: numbers whose prime divisors are all <= 23.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 60, 63, 64, 65, 66, 68, 69, 70, 72, 75, 76, 77, 78, 80, 81, 84, 85, 88, 90, 91, 92, 95
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Comments

Coincides for the first 111 terms with A174228 (divisors of 24!). - Bruno Berselli, Sep 24 2012

Crossrefs

For p-smooth numbers with other values of p, see A003586, A051037, A002473, A051038, A080197, A080681, A080682.

Programs

  • Magma
    [n: n in [1..100] | PrimeDivisors(n) subset PrimesUpTo(23)]; // Bruno Berselli, Sep 24 2012
    
  • Maple
    select(t -> max(numtheory:-factorset(t)) <= 23, [$1..1000]); # Robert Israel, Jan 22 2016
  • Mathematica
    mx = 100; Sort@ Flatten@ Table[ 2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h*23^i, {a, 0, Log[2, mx]}, {b, 0, Log[3, mx/2^a]}, {c, 0, Log[5, mx/(2^a*3^b)]}, {d, 0, Log[7, mx/(2^a*3^b*5^c)]}, {e, 0, Log[11, mx/(2^a*3^b*5^c*7^d)]}, {f, 0, Log[13, mx/(2^a*3^b*5^c*7^d*11^e)]}, {g, 0, Log[17, mx/(2^a*3^b*5^c*7^d*11^e*13^f)]}, {h, 0, Log[19, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g)]}, {i, 0, Log[23, mx/(2^a*3^b*5^c*7^d*11^e*13^f*17^g*19^h)]}] (* Robert G. Wilson v, Jan 19 2016 *)
  • PARI
    test(n)=m=n; forprime(p=2,23, while(m%p==0,m=m/p)); return(m==1)
    for(n=1,100,if(test(n),print1(n",")))
    
  • PARI
    list(lim,p=23)=if(p==2, return(powers(2, logint(lim\1,2)))); my(v=[],q=precprime(p-1),t=1); for(e=0,logint(lim\=1,p), v=concat(v, list(lim\t,q)*t); t*=p); Set(v) \\ Charles R Greathouse IV, Apr 16 2020
    
  • Python
    import heapq
    from itertools import islice
    from sympy import primerange
    def agen(p=23): # generate all p-smooth terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(agen(), 72))) # Michael S. Branicky, Nov 20 2022
    
  • Python
    from sympy import integer_log, prevprime
    def A080683(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,23)
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p <= 23} p/(p-1) = (2*3*5*7*11*13*17*19*23)/(1*2*4*6*10*12*16*18*22) = 676039/110592. - Amiram Eldar, Sep 22 2020

A147571 Numbers with exactly 4 distinct prime divisors {2,3,5,7}.

Original entry on oeis.org

210, 420, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, 2520, 2940, 3150, 3360, 3780, 4200, 4410, 5040, 5250, 5670, 5880, 6300, 6720, 7350, 7560, 8400, 8820, 9450, 10080, 10290, 10500, 11340, 11760, 12600, 13230, 13440, 14700, 15120, 15750, 16800
Offset: 1

Views

Author

Artur Jasinski, Nov 07 2008

Keywords

Comments

Successive numbers k such that EulerPhi(x)/x = m:
( Family of sequences for successive n primes )
m=1/2 numbers with exactly 1 distinct prime divisor {2} see A000079
m=1/3 numbers with exactly 2 distinct prime divisors {2,3} see A033845
m=4/15 numbers with exactly 3 distinct prime divisors {2,3,5} see A143207
m=8/35 numbers with exactly 4 distinct prime divisors {2,3,5,7} see A147571
m=16/77 numbers with exactly 5 distinct prime divisors {2,3,5,7,11} see A147572
m=192/1001 numbers with exactly 6 distinct prime divisors {2,3,5,7,11,13} see A147573
m=3072/17017 numbers with exactly 7 distinct prime divisors {2,3,5,7,11,13,17} see A147574
m=55296/323323 numbers with exactly 8 distinct prime divisors {2,3,5,7,11,13,17,19} see A147575

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^4] | PrimeDivisors(n) eq [2,3,5,7]]; // Vincenzo Librandi, Sep 15 2015
    
  • Mathematica
    a = {}; Do[If[EulerPhi[x]/x == 8/35, AppendTo[a, x]], {x, 1, 100000}]; a
    Select[Range[20000],PrimeNu[#]==4&&Max[FactorInteger[#][[;;,1]]]<11&] (* Harvey P. Dale, Nov 05 2024 *)
  • PARI
    is(n)=n%210==0 && n==2^valuation(n,2) * 3^valuation(n,3) * 5^valuation(n,5) * 7^valuation(n,7) \\ Charles R Greathouse IV, Jun 19 2016

Formula

a(n) = 210 * A002473(n). - David A. Corneth, May 14 2019
Sum_{n>=1} 1/a(n) = 1/48. - Amiram Eldar, Nov 12 2020

A080681 17-smooth numbers: numbers whose prime divisors are all <= 17.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 39, 40, 42, 44, 45, 48, 49, 50, 51, 52, 54, 55, 56, 60, 63, 64, 65, 66, 68, 70, 72, 75, 77, 78, 80, 81, 84, 85, 88, 90, 91, 96, 98, 99, 100, 102, 104, 105
Offset: 1

Views

Author

Cino Hilliard, Mar 02 2003

Keywords

Crossrefs

For p-smooth numbers with other values of p, see A003586, A051037, A002473, A051038, A080197, A080682, A080683.

Programs

  • Magma
    [n: n in [1..150] | PrimeDivisors(n) subset PrimesUpTo(17)]; // Bruno Berselli, Sep 24 2012
    
  • Mathematica
    mx = 120; Sort@ Flatten@ Table[ 2^i*3^j*5^k*7^l*11^m*13^n*17^o, {i, 0, Log[2, mx]}, {j, 0, Log[3, mx/2^i]}, {k, 0, Log[5, mx/(2^i*3^j)]}, {l, 0, Log[7, mx/(2^i*3^j*5^k)]}, {m, 0, Log[11, mx/(2^i*3^j*5^k*7^l)]}, {n, 0, Log[13, mx/(2^i*3^j*5^k*7^l*11^m)]}, {o, 0, Log[17, mx/(2^i*3^j*5^k*7^l*11^m*13^n)]}] (* Robert G. Wilson v, Aug 17 2012 *)
  • PARI
    test(n)= {m=n; forprime(p=2,17, while(m%p==0,m=m/p)); return(m==1)}
    for(n=1,200,if(test(n),print1(n",")))
    
  • PARI
    list(lim,p=17)=if(p==2, return(powers(2, logint(lim\1,2)))); my(v=[],q=precprime(p-1),t=1); for(e=0,logint(lim\=1,p), v=concat(v, list(lim\t,q)*t); t*=p); Set(v) \\ Charles R Greathouse IV, Apr 16 2020
    
  • Python
    import heapq
    from itertools import islice
    from sympy import primerange
    def agen(p=17): # generate all p-smooth terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(agen(), 70))) # Michael S. Branicky, Nov 20 2022
    
  • Python
    from sympy import integer_log, prevprime
    def A080681(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def g(x,m): return sum((x//3**i).bit_length() for i in range(integer_log(x,3)[0]+1)) if m==3 else sum(g(x//(m**i),prevprime(m))for i in range(integer_log(x,m)[0]+1))
        def f(x): return n+x-g(x,17)
        return bisection(f,n,n) # Chai Wah Wu, Sep 16 2024

Formula

Sum_{n>=1} 1/a(n) = Product_{primes p <= 17} p/(p-1) = (2*3*5*7*11*13*17)/(1*2*4*6*10*12*16) = 17017/3072. - Amiram Eldar, Sep 22 2020

A080194 7-smooth numbers which are not 5-smooth.

Original entry on oeis.org

7, 14, 21, 28, 35, 42, 49, 56, 63, 70, 84, 98, 105, 112, 126, 140, 147, 168, 175, 189, 196, 210, 224, 245, 252, 280, 294, 315, 336, 343, 350, 378, 392, 420, 441, 448, 490, 504, 525, 560, 567, 588, 630, 672, 686, 700, 735, 756, 784, 840, 875, 882, 896, 945, 980
Offset: 1

Views

Author

Klaus Brockhaus, Feb 10 2003

Keywords

Comments

Numbers of the form 7*2^r*3^s*5^t*7^u with r, s, t, u >= 0.
Multiples of 7 which are members of A002473. Or multiples of 7 with the largest prime divisor < 10.
Numbers whose greatest prime factor (A006530) is 7. - M. F. Hasler, Nov 21 2018

Examples

			28 = 2^2*7 is a term but 30 = 2*3*5 is not.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[999], FactorInteger[#][[-1, 1]] == 7 &] (* Giovanni Resta, Nov 22 2018 *)
  • PARI
    A080194_list(M)={my(L=List(),a,b,c); for(r=1,logint(M\1,7), a=7^r; for(s=0, logint(M\a,3), b=a*3^s; for(t=0,logint(M\b,5), c=b*5^t; for(u=0,logint(M\c,2), listput(L,c<A051037. - Edited by M. F. Hasler, Nov 22 2018
    
  • PARI
    select( is_A080194(n)={n>1 && vecmax(factor(n,7)[,1])==7}, [0..10^3]) \\ Defines is_A080194(), used elsewhere. The select() command is a check and illustration. For longer lists, use list() above. - M. F. Hasler, Nov 21 2018
    
  • Python
    from sympy import integer_log
    def A080194(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for i in range(integer_log(x,7)[0]+1):
                for j in range(integer_log(m:=x//7**i,5)[0]+1):
                    for k in range(integer_log(r:=m//5**j,3)[0]+1):
                        c -= (r//3**k).bit_length()
            return c
        return bisection(f,n,n)*7 # Chai Wah Wu, Sep 17 2024
    
  • Python
    # faster for initial segment of sequence
    import heapq
    from itertools import islice
    from sympy import primerange
    def A080194gen(p=7): # generator of terms
        v, oldv, h, psmooth_primes, = 1, 0, [1], list(primerange(1, p+1))
        while True:
            v = heapq.heappop(h)
            if v != oldv:
                yield 7*v
                oldv = v
                for p in psmooth_primes:
                    heapq.heappush(h, v*p)
    print(list(islice(A080194gen(), 65))) # Michael S. Branicky, Sep 17 2024

Formula

a(n) = 7 * A002473(n). - David A. Corneth, Nov 22 2018
Sum_{n>=1} 1/a(n) = 5/8. - Amiram Eldar, Nov 10 2020

A068189 Smallest positive number whose product of digits equals n, or a(n)=0 if no such number exists, i.e. when n has a prime divisor greater than 7.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 25, 0, 26, 0, 27, 35, 28, 0, 29, 0, 45, 37, 0, 0, 38, 55, 0, 39, 47, 0, 56, 0, 48, 0, 0, 57, 49, 0, 0, 0, 58, 0, 67, 0, 0, 59, 0, 0, 68, 77, 255, 0, 0, 0, 69, 0, 78, 0, 0, 0, 256, 0, 0, 79, 88, 0, 0, 0, 0, 0, 257, 0, 89, 0, 0, 355, 0, 0, 0, 0, 258, 99, 0, 0, 267, 0
Offset: 1

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Comments

a(n) > 0 if and only if n is in A002473.

Examples

			n=2,10,50,250 gives a(n)=2,25,255,2555; n=11,39,78, etc..a(n)=0.
10000 = 2 * 5 * 5 * 5 * 5 * 8. No product of two of these factors is less than 10 so a(10000) = 255558 (the concatenation of these factors in nondecreasing order). - _David A. Corneth_, Jul 31 2017
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Apply[Times, IntegerDigits[x]] a = Table[0, {256} ]; Do[ b = f[n]; If[b < 257 && a[[b]] == 0, a[[b]] =n], {n, 1, 10000} ]; a
  • PARI
    a(n) = {if(n==1, return(1)); my(res = []); forstep(i=9,2,-1, v = valuation(n, i); if(v > 0, res = concat(vector(v, j, i), res); n/=i^v)); if(n==1,fromdigits(res), 0)} \\ David A. Corneth, Jul 31 2017
    
  • Python
    def convert(n):
        if n == 1:
            return 1
        result = 0
        cur = 1
        while n > 1:
            found = False
            for i in range(9, 1, -1):
                if n % i == 0:
                    result += cur * i
                    cur *= 10
                    n //= i
                    found = True
                    break
            if not found:
                return 0
        return result
    N = 256
    for n in range(1, N):
        print(n, convert(n))
    # Dmitry Kamenetsky, Oct 20 2008

A261144 Irregular triangle of numbers that are squarefree and smooth (row n contains squarefree p-smooth numbers, where p is the n-th prime).

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 1, 2, 3, 5, 6, 10, 15, 30, 1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210, 1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 21, 22, 30, 33, 35, 42, 55, 66, 70, 77, 105, 110, 154, 165, 210, 231, 330, 385, 462, 770, 1155, 2310, 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 21, 22, 26, 30, 33, 35, 39, 42
Offset: 1

Views

Author

Jean-François Alcover, Nov 26 2015

Keywords

Comments

If we define a triangle whose n-th row consists of all squarefree numbers whose prime factors are all less than prime(k), we get this same triangle except starting with a row {1}, with offset 1. - Gus Wiseman, Aug 24 2021

Examples

			Triangle begins:
1, 2;                        squarefree and 2-smooth
1, 2, 3, 6;                  squarefree and 3-smooth
1, 2, 3, 5, 6, 10, 15, 30;
1, 2, 3, 5, 6,  7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210;
...
		

Crossrefs

Cf. A000079 (2-smooth), A003586 (3-smooth), A051037 (5-smooth), A002473 (7-smooth), A018336 (7-smooth & squarefree), A051038 (11-smooth), A087005 (11-smooth & squarefree), A080197 (13-smooth), A087006 (13-smooth & squarefree), A087007 (17-smooth & squarefree), A087008 (19-smooth & squarefree).
Row lengths are A000079.
Rightmost terms (or column k = 2^n) are A002110.
Rows are partial unions of rows of A019565.
Row n is A027750(A002110(n)), i.e., divisors of primorials.
Row sums are A054640.
Column k = 2^n-1 is A070826.
Multiplying row n by prime(n+1) gives A339195, row sums A339360.
A005117 lists squarefree numbers.
A056239 adds up prime indices, row sums of A112798.
A072047 counts prime factors of squarefree numbers.
A246867 groups squarefree numbers by Heinz weight, row sums A147655.
A329631 lists prime indices of squarefree numbers, sums A319246.
A339116 groups squarefree semiprimes by greater factor, sums A339194.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, [1],
          sort(map(x-> [x, x*ithprime(n)][], b(n-1))))
        end:
    T:= n-> b(n)[]:
    seq(T(n), n=1..7);  # Alois P. Heinz, Nov 28 2015
  • Mathematica
    primorial[n_] := Times @@ Prime[Range[n]]; row[n_] := Select[ Divisors[ primorial[n]], SquareFreeQ]; Table[row[n], {n, 1, 10}] // Flatten

Formula

T(n-1,k) = A339195(n,k)/prime(n). - Gus Wiseman, Aug 24 2021

A067734 Number of ways writing n as a product of decimal digits of some other number which has no digits equal to 1.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 2, 0, 7, 0, 2, 2, 7, 0, 7, 0, 5, 2, 0, 0, 17, 1, 0, 3, 5, 0, 8, 0, 13, 0, 0, 2, 21, 0, 0, 0, 12, 0, 8, 0, 0, 5, 0, 0, 38, 1, 3, 0, 0, 0, 15, 0, 12, 0, 0, 0, 24, 0, 0, 5, 24, 0, 0, 0, 0, 0, 6, 0, 58, 0, 0, 3, 0, 0, 0, 0, 26, 5, 0, 0, 24, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 82, 0
Offset: 1

Views

Author

Labos Elemer, Jan 28 2002

Keywords

Comments

For n=36, this was given as an exercise for children of age 14 years.

Examples

			There are 21 other numbers with no digit 1 whose digit product equals 36: 49, 66, 94, 229, 236, 263, 292, 326, 334, 343, 362, 433, 623, 632, 922, 2233, 2323, 2332, 3223, 3232, 3322. If 1-digits were permitted then an infinite number of solutions would exist, e.g., 111114111113111113. If n has a prime divisor larger than 7, i.e., a prime divisor that is two or more digits in length, such as 11, then no solutions exist at all. The largest solution is a (decimal) number created by concatenating not-necessarily-distinct prime factors, such as 36 = 3*2*2*2. [edited by _Jon E. Schoenfield_, Jun 14 2017]
		

Crossrefs

Programs

  • Mathematica
    id1[x_] := IntegerDigits[x]; id2[x_] := DeleteCases[id1[x], 1] f[x_] := Apply[Times, IntegerDigits[x]]; k=0; Do[s=f[n]; If[Equal[s, 36]&&!Greater[Length[id1[n]], Length[id2[n]]], k=k+1; Print[{k, n}]], {n, 1, 3400}]
  • PARI
    { A067734(n) = local(v,r,i2,i3); v=vector(4,i,valuation(n,prime(i))); if(n==1||n!=prod(i=1,4,prime(i)^v[i]), return(0)); r=0; for(i6=0,min(v[1],v[2]), for(i8=0,(v[1]-i6)\3, for(i4=0,(v[1]-i6-3*i8)\2, i2=v[1]-i6-3*i8-2*i4; for(i9=0,(v[2]-i6)\2, i3=v[2]-i6-2*i9; r += (i2+i3+i4+v[3]+i6+v[4]+i8+i9)! / i2! / i3! / i4! / v[3]! / i6! / v[4]! / i8! / i9! )))); r } \\ Max Alekseyev, Sep 19 2009

Formula

a(A002473(n)) > 0 for n > 1. - David A. Corneth, Jun 14 2017

A084034 Numbers which are a product of repeated-digit numbers A010785.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 75, 77, 80, 81, 84, 88, 90, 96, 98, 99, 100, 105, 108, 110, 111, 112, 120, 121, 125, 126, 128
Offset: 1

Views

Author

Amarnath Murthy, May 26 2003

Keywords

Comments

Numbers which can be written as a*b*c*... where a, b, c are numbers whose decimal expansions are repetitions of a single digit.
Superset of A051038. The first numbers in this sequence but not in A051038 are 111, 222, 333, 444, 555. - R. J. Mathar, Sep 17 2008
From David A. Corneth, Aug 03 2017: (Start)
Closed under multiplication.
Multiples of 1-digit primes and numbers of the form (10^n - 1) / 9. (End)

Examples

			99 is a member since 99 = 3*33.
9768 is a member since 9768= 2*22*222.
111*2*33*44 = 322344 is a member.
		

Crossrefs

A002473 gives products of single-digit numbers.

Programs

  • Maple
    isA010786 := proc(n) if nops(convert(convert(n,base,10),set)) = 1 then true; else false ; fi; end: isA084034 := proc(n,a010785) local d ; if n = 1 then RETURN(true) ; fi; for d in ( numtheory[divisors](n) minus{1} ) do if d in a010785 then if isA084034(n/d,a010785) then RETURN(true) ; fi; fi; od: RETURN(false) ; end: nmax := 1000: a010785 := [] : for k from 1 to nmax do if isA010786(k) then a010785 := [op(a010785),k] ; fi; od: for n from 1 to nmax do if isA084034(n,a010785) then printf("%d,",n) ; fi; end: # R. J. Mathar, Sep 17 2008

Extensions

Corrected and extended by David Wasserman, Dec 09 2004
Corrected data, offset changed to 1 by David A. Corneth, Aug 03 2017
Edited by N. J. A. Sloane, Jul 02 2017 and Oct 10 2018
Previous Showing 31-40 of 160 results. Next