cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 55 results. Next

A226546 Number of squares in all tilings of a 3 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

0, 3, 12, 34, 98, 256, 654, 1625, 3964, 9533, 22662, 53373, 124728, 289572, 668514, 1535869, 3513614, 8008090, 18191184, 41200568, 93064834, 209710139, 471520566, 1058065647, 2369890254, 5299215579, 11830941840, 26375563624, 58722396932, 130576680919
Offset: 0

Views

Author

Alois P. Heinz, Jun 10 2013

Keywords

Crossrefs

Column k=3 of A226545.
Cf. A002478.

Programs

  • PARI
    concat(0, Vec(x*(3 + 6*x + x^2) / (1 - x - 2*x^2 - x^3)^2 + O(x^30))) \\ Colin Barker, Jun 07 2020

Formula

G.f.: (x^2+6*x+3)*x/(x^3+2*x^2+x-1)^2.
a(n) = 2*a(n-1) + 3*a(n-2) - 2*a(n-3) - 6*a(n-4) - 4*a(n-5) - a(n-6) for n>5. - Colin Barker, Jun 07 2020

A362126 Expansion of 1/(1 - x*(1+x)^2)^2.

Original entry on oeis.org

1, 2, 7, 18, 47, 118, 290, 702, 1677, 3966, 9300, 21654, 50116, 115388, 264475, 603792, 1373621, 3115222, 7045205, 15892794, 35769390, 80337144, 180091131, 403002108, 900370600, 2008572044, 4474586920, 9955434456, 22123162421, 49107537598, 108891513251
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2023

Keywords

Crossrefs

Column k=2 of A362125.

Programs

  • PARI
    my(N=40, x='x+O('x^N)); Vec(1/(1-x*(1+x)^2)^2)

Formula

a(n) = 2*a(n-1) + 3*a(n-2) - 2*a(n-3) - 6*a(n-4) - 4*a(n-5) - a(n-6) for n > 5.
a(n) = Sum_{k=0..n} (-1)^k * binomial(-2,k) * binomial(2*k,n-k) = Sum_{k=0..n} (k+1) * binomial(2*k,n-k).

A362144 Maximum number of ways in which a set of integer-sided squares can tile an n X 3 rectangle.

Original entry on oeis.org

1, 1, 2, 4, 6, 12, 24, 40, 80, 160, 280, 560, 1120, 2240, 4480, 10080, 20160, 40320, 88704, 177408, 354816, 768768, 1537536, 3075072, 6589440, 13178880, 26357760, 56010240, 112020480, 224040960, 504092160, 1064194560, 2128389120, 4729753600, 9932482560
Offset: 0

Views

Author

Pontus von Brömssen, Apr 10 2023

Keywords

Crossrefs

Third column of A362142.
Cf. A002478, A361219 (rectangular pieces).

Formula

a(n) = max_{3*i+2*j<=n} C(i,j,n-3*i-2*j)*2^j, where C(i,j,k) is the trinomial coefficient (i+j+k)!/(i!*j!*k!). (i and j correspond to the number of squares of side lengths 3 and 2, respectively.)

A382406 Expansion of 1/(1 - x*(1 + x)^2)^3.

Original entry on oeis.org

1, 3, 12, 37, 111, 315, 864, 2307, 6027, 15471, 39132, 97755, 241606, 591636, 1437078, 3465748, 8305161, 19788957, 46910232, 110686101, 260064912, 608684490, 1419591546, 3300027546, 7648265728, 17676484410, 40747630332, 93704299336, 214999206831, 492262973433
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2025

Keywords

Crossrefs

Programs

  • Magma
    R := PowerSeriesRing(Rationals(), 40); f := 1/(1 - x*(1 + x)^2)^3; seq := [ Coefficient(f, n) : n in [0..30] ]; seq; // Vincenzo Librandi, Apr 10 2025
  • Mathematica
    Table[Sum[Binomial[k+2,2]*Binomial[2*k,n-k],{k,0,n}],{n,0,30}] (* Vincenzo Librandi, Apr 10 2025 *)
  • PARI
    a(n) = sum(k=0, n, binomial(k+2, 2)*binomial(2*k, n-k));
    

Formula

a(n) = Sum_{k=0..n} binomial(k+2,2) * binomial(2*k,n-k).
a(n) = 3*a(n-1) + 3*a(n-2) - 8*a(n-3) - 12*a(n-4) + 3*a(n-5) + 17*a(n-6) + 15*a(n-7) + 6*a(n-8) + a(n-9).
G.f.: 1/(1-x-2*x^2-x^3)^3. - Vincenzo Librandi, Apr 10 2025

A077899 Expansion of (1-x)^(-1)/(1+x-2*x^2+x^3).

Original entry on oeis.org

1, 0, 3, -3, 10, -18, 42, -87, 190, -405, 873, -1872, 4024, -8640, 18561, -39864, 85627, -183915, 395034, -848490, 1822474, -3914487, 8407926, -18059373, 38789713, -83316384, 178955184, -384377664, 825604417, -1773314928, 3808901427, -8181135699, 17572253482, -37743426306
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Crossrefs

Cf. A002478.

Programs

Formula

a(n) = (-1)^n * Sum_{k=0..n} binomial(2*k-1,n-k). - Seiichi Manyama, Aug 13 2024

A121574 Riordan array (1/(1-2*x), x*(1+x)/(1-2*x)).

Original entry on oeis.org

1, 2, 1, 4, 5, 1, 8, 16, 8, 1, 16, 44, 37, 11, 1, 32, 112, 134, 67, 14, 1, 64, 272, 424, 305, 106, 17, 1, 128, 640, 1232, 1168, 584, 154, 20, 1, 256, 1472, 3376, 3992, 2641, 998, 211, 23, 1, 512, 3328, 8864, 12592, 10442, 5221, 1574, 277, 26, 1
Offset: 0

Views

Author

Paul Barry, Aug 08 2006

Keywords

Comments

Row sums are A006190(n+1); diagonal sums are A077939.
Inverse is A121575.
A generalized Delannoy number triangle.
Antidiagonal sums are A002478. - Philippe Deléham, Nov 10 2011.
From Peter Bala, Feb 07 2024: (Start)
The following remarks assume the row indexing starts at n = 1.
The sequence of row polynomials R(n,x), beginning R(1,x) = 1, R(2,x) = 2 + x, R(3,x) = 4 + 5*x + x^2 , ..., is a strong divisibility sequence of polynomials in the ring Z[x]; that is, for all positive integers n and m, poly_gcd( R(n,x), R(m,x)) = R(gcd(n, m), x) - apply Norfleet (2005), Theorem 3. Consequently, the polynomial sequence {R(n,x): n >= 1} is a divisibility sequence; that is, if n divides m then R(n,x) divides R(m,x) in Z[x]. (End)

Examples

			Triangle begins
   1;
   2,   1;
   4,   5,   1;
   8,  16,   8,   1;
  16,  44,  37,  11,   1;
  32, 112, 134,  67,  14,  1;
  64, 272, 424, 305, 106, 17, 1;
		

Crossrefs

Cf. Diagonals: A000012, A016789, A080855, A000079, A053220.

Programs

  • GAP
    T:=Flat(List([0..9],n->List([0..n],k->Sum([0..n-k],j->Binomial(k,j)*Binomial(n-j,k)*2^(n-k-j))))); # Muniru A Asiru, Nov 02 2018
  • Magma
    [[(&+[ Binomial(k, j)*Binomial(n-j, k)*2^(n-k-j): j in [0..(n-k)]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Nov 02 2018
    
  • Maple
    T:=(n,k)->add(binomial(k,j)*binomial(n-j,k)*2^(n-k-j),j=0..n-k): seq(seq(T(n,k),k=0..n),n=0..9); # Muniru A Asiru, Nov 02 2018
  • Mathematica
    Table[Sum[Binomial[k, j] Binomial[n-j, k] 2^(n-k-j), {j, 0, n-k}], {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 02 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(sum(j=0, n-k, binomial(k, j)* binomial(n-j, k)*2^(n-k-j)), ", "))) \\ G. C. Greubel, Nov 02 2018
    

Formula

Number array T(n,k) = Sum_{j=0..n-k} C(k,j)*C(n-j,k)*2^(n-k-j).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) + T(n-2,k-1). - Philippe Deléham, Nov 10 2011
Recurrence for row polynomials (with row indexing starting at n = 1): R(n,x) = (x + 2)*R(n-1,x) + x*R(n-2,x) with R(1,x) = 1 and R(2,x) = x + 2. - Peter Bala, Feb 07 2024

A360090 a(n) = Sum_{k=0..n} binomial(5*k,n-k).

Original entry on oeis.org

1, 1, 6, 21, 71, 251, 882, 3088, 10829, 37975, 133146, 466852, 1636944, 5739647, 20125051, 70564951, 247423522, 867546829, 3041899638, 10665883415, 37398034921, 131129599227, 459782762029, 1612146986543, 5652708454881, 19820223058176, 69496108849357
Offset: 0

Views

Author

Seiichi Manyama, Jan 25 2023

Keywords

Comments

The number of ways to place non-overlapping Young diagrams of shape (2,1,1,1,1) on an 9 by n rectangle. - Per Alexandersson, Jul 01 2025

Crossrefs

Programs

  • Maple
    seq(add(binomial(5*k,n-k),k=0..n), n=0..50); # Robert Israel, Jul 09 2025
  • PARI
    a(n) = sum(k=0, n, binomial(5*k, n-k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(1-x*(1+x)^5))

Formula

a(n) = a(n-1) + 5*a(n-2) + 10*a(n-3) + 10*a(n-4) + 5*a(n-5) + a(n-6).
G.f.: 1/(1 - x*(1+x)^5).

A362238 Expansion of e.g.f.: 1/(1 - x*(1+x)^x).

Original entry on oeis.org

1, 1, 2, 12, 60, 460, 3900, 39438, 456288, 5896224, 85230000, 1349017560, 23353941600, 437432418696, 8828284404576, 190867622500800, 4401749312069760, 107859517575659520, 2798352667710645120, 76636669899079699776, 2209235394261812751360
Offset: 0

Views

Author

Seiichi Manyama, Apr 12 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1-x*(1+x)^x)))

Formula

a(n) = n! * Sum_{i=0..n} Sum_{j=0..n-i} i^j * Stirling1(n-i-j,j)/(n-i-j)!.

A025234 An L-tile is a 2 X 2 square with the upper 1 X 1 subsquare removed; no rotations are allowed. a(n) = number of tilings of a 4 X n rectangle using tiles that are either 1 X 1 squares or L-tiles.

Original entry on oeis.org

1, 0, 4, 8, 28, 83, 255, 778, 2377, 7259, 22173, 67721, 206844, 631764, 1929609, 5893632, 18001012, 54980764, 167928588, 512906847, 1566579211, 4784826786, 14614369465, 44636891651, 136335139273, 416410496177, 1271848932360, 3884627600872, 11864877355729
Offset: 0

Views

Author

N. J. A. Sloane, Mar 07 2003

Keywords

Crossrefs

Cf. A002478.

Formula

G.f.: (1-x-x^2)/(1-x-5*x^2-4*x^3+x^5).

A108122 G.f.: (1-2*x^2)/(1-x-2*x^2-x^3).

Original entry on oeis.org

1, 1, 1, 4, 7, 16, 34, 73, 157, 337, 724, 1555, 3340, 7174, 15409, 33097, 71089, 152692, 327967, 704440, 1513066, 3249913, 6980485, 14993377, 32204260, 69171499, 148573396, 319120654, 685438945, 1472253649, 3162252193, 6792198436, 14588956471, 31335605536
Offset: 0

Views

Author

Roger L. Bagula, Jun 04 2005

Keywords

Comments

The sequence counts row lengths of an array in which rows are obtained by the substitution 1->2, 2->3, 3->1,2,2,3 from previous rows:
1;
2;
3;
1,2,2,3;
2,3,3,1,2,2,3;
3,1,2,2,3,1,2,2,3,2,3,3,1,2,2,3;

Crossrefs

Programs

  • Maple
    a[0],a[1],a[2]:= 1,1,1:
    for n from 3 to 100 do
      a[n]:= a[n-1]+2*a[n-2]+a[n-3]
    od:
    seq(a[i],i=0..100); # Robert Israel, Jun 15 2014
  • Mathematica
    s[1] = {2}; s[2] = {3}; s[3] = {1, 2, 2, 3}; t[a_] := Flatten[s /@ a]; p[0] = {1}; p[1] = t[p[0]]; p[n_] := t[p[n - 1]] a0 = Table[Length[p[i]], {i, 0, 20}]
    f[n_] := Sum[ 2^i*Binomial[n - 2 m, m - i]*Binomial[n - 2 m + i - 1, n - 2 m - 1], {m, 0, (n - 1)/2}, {i, 0, m}]; f[0] = 1; Array[f, 33, 0] (* or *)
    CoefficientList[ Series[(1 - 2 x^2)/(1 - x - 2 x^2 - x^3), {x, 0, 33}], x] (* or *)
    LinearRecurrence[ {1, 2, 1}, {1, 1, 1}, 34] (* or *)
    Length /@ NestList[ Flatten[ # /. {1 -> 2, 2 -> 3, 3 -> {1, 2, 2, 3}}] &, {1}, 24] (* Robert G. Wilson v, Jun 13 2014 *)
  • Maxima
    a(n):=sum(sum(2^i*binomial(n-2*m+1,m-i)*binomial(n-2*m+i,n-2*m),i,0,m),m,0,(n)/2); /* Vladimir Kruchinin, Dec 17 2011 */

Formula

a(n) = a(n-1) + 2*a(n-2) + a(n-3), starting 1,1,1.
a(n) = A002478(n) - 2*A002478(n-2), n>1.
a(n) = sum(m=0..n/2, sum(i=0..m, 2^i*binomial(n-2*m+1,m-i)*binomial(n-2*m+i,n-2*m))). - Vladimir Kruchinin, Dec 17 2011

Extensions

More terms from Wesley Ivan Hurt, Jun 14 2014
Previous Showing 41-50 of 55 results. Next