cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 113 results. Next

A001858 Number of forests of trees on n labeled nodes.

Original entry on oeis.org

1, 1, 2, 7, 38, 291, 2932, 36961, 561948, 10026505, 205608536, 4767440679, 123373203208, 3525630110107, 110284283006640, 3748357699560961, 137557910094840848, 5421179050350334929, 228359487335194570528, 10239206473040881277575, 486909744862576654283616
Offset: 0

Views

Author

Keywords

Comments

The number of integer lattice points in the permutation polytope of {1,2,...,n}. - Max Alekseyev, Jan 26 2010
Equals the number of score sequences for a tournament on n vertices. See Prop. 7 of the article by Bartels et al., or Example 3.1 in the article by Stanley. - David Radcliffe, Aug 02 2022
Number of labeled acyclic graphs on n vertices. The unlabeled version is A005195. The covering case is A105784, connected A000272. - Gus Wiseman, Apr 29 2024

Examples

			From _Gus Wiseman_, Apr 29 2024: (Start)
Edge-sets of the a(4) = 38 forests:
  {}  {12}  {12,13}  {12,13,14}
      {13}  {12,14}  {12,13,24}
      {14}  {12,23}  {12,13,34}
      {23}  {12,24}  {12,14,23}
      {24}  {12,34}  {12,14,34}
      {34}  {13,14}  {12,23,24}
            {13,23}  {12,23,34}
            {13,24}  {12,24,34}
            {13,34}  {13,14,23}
            {14,23}  {13,14,24}
            {14,24}  {13,23,24}
            {14,34}  {13,23,34}
            {23,24}  {13,24,34}
            {23,34}  {14,23,24}
            {24,34}  {14,23,34}
                     {14,24,34}
(End)
		

References

  • B. Bollobas, Modern Graph Theory, Springer, 1998, p. 290.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The connected case is A000272, rooted A000169.
The unlabeled version is A005195, connected A000055.
The covering case is A105784, unlabeled A144958.
Row sums of A138464.
For triangles instead of cycles we have A213434, covering A372168.
For a unique cycle we have A372193, covering A372195.
A002807 counts cycles in a complete graph.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Maple
    exp(x+x^2+add(n^(n-2)*x^n/n!, n=3..50));
    # second Maple program:
    a:= proc(n) option remember; `if`(n=0, 1, add(
          binomial(n-1, j-1)*j^(j-2)*a(n-j), j=1..n))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 15 2008
    # third Maple program:
    F:= exp(-LambertW(-x)*(1+LambertW(-x)/2)):
    S:= series(F,x,51):
    seq(coeff(S,x,j)*j!, j=0..50); # Robert Israel, May 21 2015
  • Mathematica
    nn=20;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];Range[0,nn]!CoefficientList[ Series[Exp[t-t^2/2],{x,0,nn}],x] (* Geoffrey Critzer, Sep 05 2012 *)
    nmax = 20; CoefficientList[Series[-LambertW[-x]/(x*E^(LambertW[-x]^2/2)), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jul 19 2019 *)
  • PARI
    a(n)=if(n<0,0,sum(m=0,n,sum(j=0,m,binomial(m,j)*binomial(n-1,n-m-j)*n^(n-m-j)*(m+j)!/(-2)^j)/m!)) /* Michael Somos, Aug 22 2002 */

Formula

E.g.f.: exp( Sum_{n>=1} n^(n-2)*x^n/n! ). This implies (by a theorem of Wright) that a(n) ~ exp(1/2)*n^(n-2). - N. J. A. Sloane, May 12 2008 [Corrected by Philippe Flajolet, Aug 17 2008]
E.g.f.: exp(T - T^2/2), where T = T(x) = Sum_{n>=1} n^(n-1)*x^n/n! is Euler's tree function (see A000169). - Len Smiley, Dec 12 2001
Shifts 1 place left under the hyperbinomial transform (cf. A088956). - Paul D. Hanna, Nov 03 2003
a(0) = 1, a(n) = Sum_{j=0..n-1} C(n-1,j) (j+1)^(j-1) a(n-1-j) if n>0. - Alois P. Heinz, Sep 15 2008

Extensions

More terms from Michael Somos, Aug 22 2002

A054548 Triangular array giving number of labeled graphs on n unisolated nodes and k=0...n*(n-1)/2 edges.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 3, 16, 15, 6, 1, 0, 0, 0, 30, 135, 222, 205, 120, 45, 10, 1, 0, 0, 0, 15, 330, 1581, 3760, 5715, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 0, 0, 0, 0, 315, 4410, 23604, 73755, 159390, 259105, 331716, 343161, 290745, 202755, 116175
Offset: 0

Views

Author

Vladeta Jovovic, Apr 09 2000

Keywords

Examples

			From _Gus Wiseman_, Feb 14 2024: (Start)
Triangle begins:
   1
   0
   0   1
   0   0   3   1
   0   0   3  16  15   6   1
   0   0   0  30 135 222 205 120  45  10   1
Row n = 4 counts the following graphs:
  .  .  12-34  12-13-14  12-13-14-23  12-13-14-23-24  12-13-14-23-24-34
        13-24  12-13-24  12-13-14-24  12-13-14-23-34
        14-23  12-13-34  12-13-14-34  12-13-14-24-34
               12-14-23  12-13-23-24  12-13-23-24-34
               12-14-34  12-13-23-34  12-14-23-24-34
               12-23-24  12-13-24-34  13-14-23-24-34
               12-23-34  12-14-23-24
               12-24-34  12-14-23-34
               13-14-23  12-14-24-34
               13-14-24  12-23-24-34
               13-23-24  13-14-23-24
               13-23-34  13-14-23-34
               13-24-34  13-14-24-34
               14-23-24  13-23-24-34
               14-23-34  14-23-24-34
               14-24-34
(End)
		

References

  • F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973, Page 29, Exercise 1.4.

Crossrefs

Row sums give A006129. Cf. A054547.
The connected case is A062734, with loops A369195.
This is the covering case of A084546.
Column sums are A121251, with loops A173219.
The version with loops is A369199, row sums A322661.
The unlabeled version is A370167, row sums A002494.
A006125 counts simple graphs; also loop-graphs if shifted left.

Programs

  • Mathematica
    nn=5; s=Sum[(1+y)^Binomial[n,2]  x^n/n!, {n,0,nn}]; Range[0,nn]! CoefficientList[Series[ s Exp[-x], {x,0,nn}], {x,y}] //Grid  (* returns triangle indexed at n = 0, Geoffrey Critzer, Oct 07 2012 *)
    Table[Length[Select[Subsets[Subsets[Range[n],{2}],{k}],Union@@#==Range[n]&]],{n,0,5},{k,0,Binomial[n,2]}] (* Gus Wiseman, Feb 14 2024 *)

Formula

T(n, k) = Sum_{i=0..n} (-1)^(n-i)*C(n, i)*C(C(i, 2), k), k=0...n*(n-1)/2.
E.g.f.: exp(-x)*Sum_{n>=0} (1 + y)^C(n,2)*x^n/n!. - Geoffrey Critzer, Oct 07 2012

Extensions

a(0) prepended by Gus Wiseman, Feb 14 2024

A259862 Triangle read by rows: T(n,k) = number of unlabeled graphs with n nodes and connectivity exactly k (n>=1, 0<=k<=n-1).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 2, 1, 13, 11, 7, 2, 1, 44, 56, 39, 13, 3, 1, 191, 385, 332, 111, 21, 3, 1, 1229, 3994, 4735, 2004, 345, 34, 4, 1, 13588, 67014, 113176, 66410, 13429, 992, 54, 4, 1, 288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1, 12297299, 105731474, 327695586, 388624106, 162318088, 21500415, 820956, 9813, 121, 5, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jul 08 2015

Keywords

Comments

These are vertex-connectivities. Spanning edge-connectivity is A263296. Non-spanning edge-connectivity is A327236. Cut-connectivity is A327127. - Gus Wiseman, Sep 03 2019

Examples

			Triangle begins:
       1;
       1,       1;
       2,       1,       1;
       5,       3,       2,       1;
      13,      11,       7,       2,       1;
      44,      56,      39,      13,       3,     1;
     191,     385,     332,     111,      21,     3,    1;
    1229,    3994,    4735,    2004,     345,    34,    4,  1;
   13588,   67014,  113176,   66410,   13429,   992,   54,  4, 1;
  288597, 1973029, 4629463, 3902344, 1109105, 99419, 3124, 81, 5, 1;
  12297299,105731474,327695586,388624106,162318088,21500415,820956,9813,121,5,1;
  ...
		

Crossrefs

Columns k=0..10 (up to initial nonzero terms) are A000719, A052442, A052443, A052444, A052445, A324234, A324235, A324088, A324089, A324090, A324091.
Row sums are A000088.
Number of graphs with connectivity at least k for k=1..10 are A001349, A002218, A006290, A086216, A086217, A324240, A324092, A324093, A324094, A324095.
The labeled version is A327334.

A367869 Number of labeled simple graphs covering n vertices and satisfying a strict version of the axiom of choice.

Original entry on oeis.org

1, 0, 1, 4, 34, 387, 5596, 97149, 1959938, 44956945, 1154208544, 32772977715, 1019467710328, 34473686833527, 1259038828370402, 49388615245426933, 2070991708598960524, 92445181295983865757, 4376733266230674345874, 219058079619119072854095, 11556990682657196214302036
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
Number of labeled n-node graphs with at most one cycle in each component and no isolated vertices. - Andrew Howroyd, Dec 30 2023

Examples

			The a(3) = 4 graphs:
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

The connected case is A129271.
The non-covering case is A133686, complement A367867.
The complement is A367868, connected A140638 (unlabeled A140636).
A001187 counts connected graphs, A001349 unlabeled.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A143543 counts simple labeled graphs by number of connected components.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Select[Tuples[#], UnsameQ@@#&]!={}&]],{n,0,5}]
  • PARI
    seq(n)={my(t=-lambertw(-x + O(x*x^n))); Vec(serlaplace(sqrt(1/(1-t))*exp(t/2 - 3*t^2/4 - x)))} \\ Andrew Howroyd, Dec 30 2023

Formula

E.g.f.: exp(B(x) - x - 1) where B(x) is the e.g.f. of A129271. - Andrew Howroyd, Dec 30 2023

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 30 2023

A001429 Number of n-node connected unicyclic graphs.

Original entry on oeis.org

1, 2, 5, 13, 33, 89, 240, 657, 1806, 5026, 13999, 39260, 110381, 311465, 880840, 2497405, 7093751, 20187313, 57537552, 164235501, 469406091, 1343268050, 3848223585, 11035981711, 31679671920, 91021354454, 261741776369, 753265624291, 2169441973139, 6252511838796
Offset: 3

Views

Author

Keywords

Comments

Also unlabeled connected simple graphs with n vertices and n edges. The labeled version is A057500. - Gus Wiseman, Feb 12 2024

Examples

			From _Gus Wiseman_, Feb 12 2024: (Start)
Representatives of the a(3) = 1 through a(6) = 13 simple graphs:
  {12,13,23}  {12,13,14,23}  {12,13,14,15,23}  {12,13,14,15,16,23}
              {12,13,24,34}  {12,13,14,23,25}  {12,13,14,15,23,26}
                             {12,13,14,23,45}  {12,13,14,15,23,46}
                             {12,13,14,25,35}  {12,13,14,15,26,36}
                             {12,13,24,35,45}  {12,13,14,23,25,36}
                                               {12,13,14,23,25,46}
                                               {12,13,14,23,45,46}
                                               {12,13,14,23,45,56}
                                               {12,13,14,25,26,35}
                                               {12,13,14,25,35,46}
                                               {12,13,14,25,35,56}
                                               {12,13,14,25,36,56}
                                               {12,13,24,35,46,56}
(End)
		

References

  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

For at most one cycle we have A005703, labeled A129271, complement A140637.
Next-to-main diagonal of A054924. Cf. A000055.
The labeled version is A057500, connected case of A137916.
This is the connected case of A137917 and A236570.
Row k = 1 of A137918.
The version with loops is A368983.
A001349 counts unlabeled connected graphs.
A001434 and A006649 count unlabeled graphs with # vertices = # edges.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Mathematica
    Needs["Combinatorica`"];
    nn=30;s[n_,k_]:=s[n,k]=a[n+1-k]+If[n<2k,0,s[n-k,k]];a[1]=1;a[n_]:=a[n]=Sum[a[i]s[n-1,i]i,{i,1,n-1}]/(n-1);rt=Table[a[i],{i,1,nn}];Apply[Plus,Table[Take[CoefficientList[CycleIndex[DihedralGroup[n],s]/.Table[s[j]->Table[Sum[rt[[i]]x^(k*i),{i,1,nn}],{k,1,nn}][[j]],{j,1,nn}],x],nn],{n,3,nn}]]  (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
    (* Second program: *)
    TreeGf[nn_] := Module[{A}, A = Table[1, {nn}]; For[n = 1, n <= nn 1, n++, A[[n + 1]] = 1/n * Sum[Sum[ d*A[[d]], {d, Divisors[k]}]*A[[n - k + 1]], {k, 1, n}]]; x A.x^Range[0, nn-1]];
    seq[n_] := Module[{t, g}, If[n < 3, {}, t = TreeGf[n - 2]; g[e_] := Normal[t + O[x]^(Quotient[n, e]+1)] /. x -> x^e  + O[x]^(n+1); Sum[Sum[ EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[k], g[1]* g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2], {k, 3, n}]]/2 // Drop[CoefficientList[#, x], 3]&];
    seq[32] (* Jean-François Alcover, Oct 05 2019, after Andrew Howroyd's PARI code *)
  • PARI
    \\ TreeGf gives gf of A000081
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={if(n<3, [], my(t=TreeGf(n-2)); my(g(e)=subst(t + O(x*x^(n\e)),x,x^e) + O(x*x^n)); Vec(sum(k=3, n, sumdiv(k, d, eulerphi(d)*g(d)^(k/d))/k + if(k%2, g(1)*g(2)^(k\2), (g(1)^2+g(2))*g(2)^(k/2-1)/2))/2))} \\ Andrew Howroyd, May 05 2018

Formula

a(n) = A068051(n) - A027852(n) - A000081(n).

Extensions

More terms from Ronald C. Read
a(27) corrected, more terms, formula from Christian G. Bower, Feb 12 2002
Edited by Charles R Greathouse IV, Oct 05 2009
Terms a(30) and beyond from Andrew Howroyd, May 05 2018

A367868 Number of labeled simple graphs covering n vertices and contradicting a strict version of the axiom of choice.

Original entry on oeis.org

0, 0, 0, 0, 7, 381, 21853, 1790135, 250562543, 66331467215, 34507857686001, 35645472109753873, 73356936892660012513, 301275024409580265134121, 2471655539736293803311467943, 40527712706903494712385171632959, 1328579255614092966328511889576785109
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(4) = 7 graphs:
  {{1,2},{1,3},{1,4},{2,3},{2,4}}
  {{1,2},{1,3},{1,4},{2,3},{3,4}}
  {{1,2},{1,3},{1,4},{2,4},{3,4}}
  {{1,2},{1,3},{2,3},{2,4},{3,4}}
  {{1,2},{1,4},{2,3},{2,4},{3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

The connected case is A140638, unlabeled A140636.
The non-covering case is A367867.
The complement is A367869, connected A129271, non-covering A133686.
The version for set-systems is A367903, ranks A367907.
A001187 counts connected graphs, A001349 unlabeled.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems (without singletons A016031), unlabeled A000612.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A143543 counts simple labeled graphs by number of connected components.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Union@@#==Range[n]&&Select[Tuples[#], UnsameQ@@#&]=={}&]],{n,0,5}]

Formula

a(n) = A006129(n) - A367869(n). - Andrew Howroyd, Dec 30 2023

Extensions

Terms a(7) and beyond from Andrew Howroyd, Dec 30 2023

A140637 Number of unlabeled graphs of positive excess with n nodes.

Original entry on oeis.org

0, 0, 0, 2, 15, 110, 936, 12073, 273972, 12003332, 1018992968, 165091159269, 50502031331411, 29054155657134165, 31426485969804026075, 64001015704527557101231, 245935864153532932681481794, 1787577725145611700547871854870, 24637809253125004524383007473440146
Offset: 1

Views

Author

Washington Bomfim, May 21 2008

Keywords

Comments

We can find in "The Birth of the Giant Component" p. 53, see the link, the following: "The excess of a graph or multigraph is the number of edges plus the number of acyclic components, minus the number of vertices."
If G has just one complex component with 4 nodes, the "non-complex part" of G can be,
a) One forest of order 4. There are 6 forests, so 2*6=12 graphs.
b) One triangle and one isolated vertex, or 2*1=2 graphs.
c) One unicyclic graph of order 4, so 2*2=4 graphs.
Also the number of unchoosable unlabeled graphs with up to n vertices, where a graph is choosable iff it is possible to choose a different vertex from each edge. The labeled version is A367867, covering A367868, connected A140638. - Gus Wiseman, Feb 13 2024

Examples

			Below we show that a(8) = 12073. Note that A140636(n) is the number of connected graphs of positive excess with n nodes.
Let G be a disconnected graph of positive excess with 8 nodes. In this case, G has one or two complex components. We have 3 graphs of order 8 with two complex components. One of those graphs is depicted in the figure below:
  O---O...O---O
  |\..|...|\./|
  |.\.|...|.X.|
  |..\|...|/.\|
  O---O...O---O
If G has one complex component with 5 nodes, the non-complex part of G can be,
a) One forest of order 3. There are 3 forests, so A140636(5) * 3 = 39 graphs.
b) One triangle, so A140636(5) = 13 graphs.
If G has one complex component with 6 nodes, the non-complex part of G is a forest of order 2. There are 2 forests. We have A140636(6) * 2, or 186 graphs.
If G has one complex component with 7 nodes, the non-complex part of G is one isolated vertex. We have A140636(7), or 809 graphs.
Finally if G is connected, we have A140636(8), or 11005 graphs.
The total is 3 + 12 + 2 + 4 + 39 + 13 + 186 + 809 + 11005 = 12073.
		

Crossrefs

The labeled complement is A133686, covering A367869, connected A129271.
The complement is A134964, connected A005703.
The connected covering case is A140636.
The labeled version is A367867, covering A367868, connected A140638.
Set-systems not of this type are A367902, ranks A367906.
Set-systems of this type are A367903, ranks A367907.
For set-systems we have A368094, complement A368095.
For multiset partitions we have A368097, complement A368098.
Factorizations of this type are A368413, complement A368414.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Select[Subsets[Subsets[Range[n],{2}]],Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,5}] (* Gus Wiseman, Feb 14 2024 *)

Formula

a(n) = A000088(n) - A134964(n).

A137916 Number of n-node labeled graphs whose components are unicyclic graphs.

Original entry on oeis.org

1, 0, 0, 1, 15, 222, 3670, 68820, 1456875, 34506640, 906073524, 26154657270, 823808845585, 28129686128940, 1035350305641990, 40871383866109888, 1722832666898627865, 77242791668604946560, 3670690919234354407000, 184312149879830557190940, 9751080154504005703189791
Offset: 0

Views

Author

Washington Bomfim, Feb 22 2008

Keywords

Comments

Also the number of labeled simple graphs with n vertices and n edges such that it is possible to choose a different vertex from each edge. The version without the choice condition is A116508, covering A367863. - Gus Wiseman, Jan 25 2024

Examples

			a(6) = 3670 because A057500(6) = 3660 and two triangles can be labeled in 10 ways.
From _Gus Wiseman_, Jan 25 2024: (Start)
The a(0) = 1 through a(4) = 15 simple graphs:
  {}  .  .  {12,13,23}  {12,13,14,23}
                        {12,13,14,24}
                        {12,13,14,34}
                        {12,13,23,24}
                        {12,13,23,34}
                        {12,13,24,34}
                        {12,14,23,24}
                        {12,14,23,34}
                        {12,14,24,34}
                        {12,23,24,34}
                        {13,14,23,24}
                        {13,14,23,34}
                        {13,14,24,34}
                        {13,23,24,34}
                        {14,23,24,34}
(End)
		

References

  • V. F. Kolchin, Random Graphs. Encyclopedia of Mathematics and Its Applications 53. Cambridge Univ. Press, Cambridge, 1999.

Crossrefs

The connected case is A057500.
Row sums of A106239.
The unlabeled version is A137917.
Diagonal of A144228.
The version with loops appears to be A333331, unlabeled A368984.
Column k = 0 of A368924.
The complement is counted by A369143, unlabeled A369201, covering A369144.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable simple graphs, covering A367869.
A140637 counts unlabeled non-choosable graphs, covering A369202.
A367867 counts non-choosable graphs, covering A367868.

Programs

  • Maple
    cy:= proc(n) option remember;
           binomial(n-1, 2)*add((n-3)!/(n-2-t)!*n^(n-2-t), t=1..n-2)
         end:
    T:= proc(n,k) option remember; `if`(k=0, 1, `if`(k<0 or n T(n,n):
    seq(a(n), n=0..30);  # Alois P. Heinz, Sep 15 2008
  • Mathematica
    nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; Drop[Range[0, nn]! CoefficientList[Series[Exp[Log[1/(1 - t)]/2 - t/2 - t^2/4], {x, 0, nn}], x], 1] (* Geoffrey Critzer, Jan 24 2012 *)
    Table[Length[Select[Subsets[Subsets[Range[n],{2}],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]],{n,0,5}] (* Gus Wiseman, Jan 25 2024 *)
  • PARI
    A057500(p) = (p-1)! * p^p /2 * sum(k = 3,p, 1/(p^k*(p-k)!)); /* Vladeta Jovovic, A057500. */
    F(n,N) = { my(s = 0, K, D, Mc); forpart(P = n, D = Set(P); K = vector(#D);
    for(i=1, #D, K[i] = #select(x->x == D[i], Vec(P)));
    Mc = n!/prod(i=1,#D, K[i]!);
    s += Mc * prod(i = 1, #D, A057500(D[i])^K[i] / ( D[i]!^K[i])) , [3, n], [N, N]); s };
    a(n)= {my(N); sum(N = 1, n, F(n,N))};
    
  • PARI
    seq(n)={my(w=lambertw(-x+O(x*x^n))); Vec(serlaplace(exp(-log(1+w)/2 + w/2 - w^2/4)))} \\ Andrew Howroyd, May 18 2021

Formula

a(n) = Sum_{N = 1..n} ((n!/N!) * Sum_{n_1 + n_2 + ... + n_N = n} Product_{i = 1..N} ( A057500(n_i) / n_i! ) ). [V. F. Kolchin p. 31, (1.4.2)] replacing numerator terms n_i^(n_i-2) by A057500(n_i).
a(n) = A144228(n,n). - Alois P. Heinz, Sep 15 2008
E.g.f.: exp(B(T(x))) where B(x) = (log(1/(1-x))-x-x^2/2)/2 and T(x) is the e.g.f. for A000169 (labeled rooted trees). - Geoffrey Critzer, Jan 24 2012
a(n) ~ 2^(-1/4)*exp(-3/4)*GAMMA(3/4)*n^(n-1/4)/sqrt(Pi) * (1-7*Pi/(12*GAMMA(3/4)^2*sqrt(n))). - Vaclav Kotesovec, Aug 16 2013
E.g.f.: exp(B(x)) where B(x) is the e.g.f. of A057500. - Andrew Howroyd, May 18 2021

Extensions

a(0)=1 prepended by Andrew Howroyd, May 18 2021

A367862 Number of n-vertex labeled simple graphs with the same number of edges as covered vertices.

Original entry on oeis.org

1, 1, 1, 2, 20, 308, 5338, 105298, 2366704, 60065072, 1702900574, 53400243419, 1836274300504, 68730359299960, 2782263907231153, 121137565273808792, 5645321914669112342, 280401845830658755142, 14788386825536445299398, 825378055206721558026931, 48604149005046792753887416
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2023

Keywords

Comments

Unlike the connected case (A057500), these graphs may have more than one cycle; for example, the graph {{1,2},{1,3},{1,4},{2,3},{2,4},{5,6}} has multiple cycles.

Examples

			Non-isomorphic representatives of the a(4) = 20 graphs:
  {}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,4},{2,3}}
  {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

The connected case is A057500, unlabeled A001429.
Counting all vertices (not just covered) gives A116508.
The covering case is A367863, unlabeled A006649.
For set-systems we have A367916, ranks A367917.
A001187 counts connected graphs, A001349 unlabeled.
A003465 counts covering set-systems, unlabeled A055621, ranks A326754.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A133686 = graphs satisfy strict AoC, connected A129271, covering A367869.
A143543 counts simple labeled graphs by number of connected components.
A323818 counts connected set-systems, unlabeled A323819, ranks A326749.
A367867 = graphs contradict strict AoC, connected A140638, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]==Length[Union@@#]&]],{n,0,5}]
  • PARI
    \\ Here b(n) is A367863(n)
    b(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n))
    a(n) = sum(k=0, n, binomial(n,k) * b(k)) \\ Andrew Howroyd, Dec 29 2023

Formula

Binomial transform of A367863.

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 29 2023

A369199 Irregular triangle read by rows where T(n,k) is the number of labeled loop-graphs covering n vertices with k edges.

Original entry on oeis.org

1, 0, 1, 0, 1, 3, 1, 0, 0, 6, 17, 15, 6, 1, 0, 0, 3, 46, 150, 228, 206, 120, 45, 10, 1, 0, 0, 0, 45, 465, 1803, 3965, 5835, 6210, 4955, 2998, 1365, 455, 105, 15, 1, 0, 0, 0, 15, 645, 5991, 27364, 79470, 165555, 264050, 334713, 344526, 291200, 202860, 116190, 54258, 20349, 5985, 1330, 210, 21, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 18 2024

Keywords

Examples

			Triangle begins:
   1
   0   1
   0   1   3   1
   0   0   6  17  15   6   1
   0   0   3  46 150 228 206 120  45  10   1
Row n = 3 counts the following loop-graphs (loops shown as singletons):
  {1,23}   {1,2,3}     {1,2,3,12}    {1,2,3,12,13}   {1,2,3,12,13,23}
  {2,13}   {1,2,13}    {1,2,3,13}    {1,2,3,12,23}
  {3,12}   {1,2,23}    {1,2,3,23}    {1,2,3,13,23}
  {12,13}  {1,3,12}    {1,2,12,13}   {1,2,12,13,23}
  {12,23}  {1,3,23}    {1,2,12,23}   {1,3,12,13,23}
  {13,23}  {1,12,13}   {1,2,13,23}   {2,3,12,13,23}
           {1,12,23}   {1,3,12,13}
           {1,13,23}   {1,3,12,23}
           {2,3,12}    {1,3,13,23}
           {2,3,13}    {1,12,13,23}
           {2,12,13}   {2,3,12,13}
           {2,12,23}   {2,3,12,23}
           {2,13,23}   {2,3,13,23}
           {3,12,13}   {2,12,13,23}
           {3,12,23}   {3,12,13,23}
           {3,13,23}
           {12,13,23}
		

Crossrefs

The version without loops is A054548.
This is the covering case of A084546.
Column sums are A173219.
Row sums are A322661, unlabeled A322700.
The connected case is A369195, without loops A062734.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts simple graphs; also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}],{k}],Length[Union@@#]==n&]],{n,0,5},{k,0,Binomial[n+1,2]}]
  • PARI
    T(n)={[Vecrev(p) | p<-Vec(serlaplace(exp(-x + O(x*x^n))*(sum(j=0, n, (1 + y)^binomial(j+1, 2)*x^j/j!)))) ]}
    { my(A=T(6)); for(i=1, #A, print(A[i])) } \\ Andrew Howroyd, Feb 02 2024

Formula

E.g.f.: exp(-x) * (Sum_{j >= 0} (1 + y)^binomial(j+1, 2)*x^j/j!). - Andrew Howroyd, Feb 02 2024
Previous Showing 11-20 of 113 results. Next