cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 113 results. Next

A144958 Number of unlabeled acyclic graphs covering n vertices.

Original entry on oeis.org

1, 0, 1, 1, 3, 4, 10, 17, 39, 77, 176, 381, 891, 2057, 4941, 11915, 29391, 73058, 184236, 468330, 1202349, 3108760, 8097518, 21218776, 55925742, 148146312, 394300662, 1053929982, 2828250002, 7617271738, 20584886435, 55802753243
Offset: 0

Views

Author

Washington Bomfim, Sep 27 2008

Keywords

Comments

a(n) is the number of forests with n unlabeled nodes without isolated vertices. This follows from the fact that for n>0 A005195(n-1) counts the forests with one or more isolated nodes.
The labeled version is A105784. The connected case is A000055. This is the covering case of A005195. - Gus Wiseman, Apr 29 2024

Examples

			From _Gus Wiseman_, Apr 29 2024: (Start)
Edge-sets of non-isomorphic representatives of the a(0) = 1 through a(5) = 4 forests:
  {}    .    {12}    {13,23}    {12,34}       {12,35,45}
                                {13,24,34}    {13,24,35,45}
                                {14,24,34}    {14,25,35,45}
                                              {15,25,35,45}
(End)
		

Crossrefs

The connected case is A000055.
This is the covering case of A005195, labeled A001858.
The labeled version is A105784.
For triangles instead of cycles we have A372169, non-covering A006785.
Unique cycle: A372191 (lab A372195), non-covering A236570 (lab A372193).
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])],{p,Permutations[Union@@m]}]]];
    cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations/@Subsets[Union@@y,{k}],And@@Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&],{k,3,Length[y]}],Min@@#==First[#]&];
    Table[Length[Union[Union[brute/@Select[Subsets[Subsets[Range[n],{2}]],Union@@#==Range[n]&&Length[cyc[#]]==0&]]]],{n,0,5}] (* Gus Wiseman, Apr 29 2024 *)
  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
    seq(n)={my(t=TreeGf(n), v=EulerT(Vec(t - t^2/2 + subst(t,x,x^2)/2))); concat([1,0], vector(#v-1, i, v[i+1]-v[i]))} \\ Andrew Howroyd, Aug 01 2024

Formula

a(n) = A005195(n) - A005195(n-1).

Extensions

Name changed and 1 prepended by Gus Wiseman, Apr 29 2024.

A066383 a(n) = Sum_{k=0..n} C(n*(n+1)/2,k).

Original entry on oeis.org

1, 2, 7, 42, 386, 4944, 82160, 1683218, 40999516, 1156626990, 37060382822, 1328700402564, 52676695500313, 2287415069586304, 107943308165833912, 5499354613856855290, 300788453960472434648, 17577197510240126035698, 1092833166733915284972350
Offset: 0

Views

Author

N. J. A. Sloane, Dec 23 2001

Keywords

Comments

Number of labeled loop-graphs with n vertices and at most n edges. - Gus Wiseman, Feb 14 2024

Examples

			From _Gus Wiseman_, Feb 14 2024: (Start)
The a(0) = 1 through a(2) = 7 loop-graphs (loops shown as singletons):
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1,2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
(End)
		

Crossrefs

The case of equality is A014068, covering A368597.
The loopless version is A369192, covering A369191.
The covering case is A369194, minimal case A001862.
Counting only covered vertices gives A369196, without loops A369193.
The connected covering case is A369197, without loops A129271.
The unlabeled version is A370168, covering A370169.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    f[n_] := Sum[Binomial[n (n + 1)/2, k], {k, 0, n}]; Array[f, 21, 0] (* Vincenzo Librandi, May 06 2016 *)
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]],Length[#]<=n&]],{n,0,5}] (* Gus Wiseman, Feb 14 2024 *)
  • PARI
    { for (n=0, 100, a=0; for (k=0, n, a+=binomial(n*(n + 1)/2, k)); write("b066383.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 12 2010
    
  • Python
    from math import comb
    def A066383(n): return sum(comb(comb(n+1,2),k) for k in range(n+1)) # Chai Wah Wu, Jul 10 2024

Formula

a(n) = 2^(n*(n+1)/2) - binomial(n*(n+1)/2,n+1)*2F1(1,(-n^2+n+2)/2;n+2;-1) = A006125(n) - A116508(n+1) * 2F1(1,(-n^2+n+2)2;n+2;-1), where 2F1(a,b;c;x) is the hypergeometric function. - Ilya Gutkovskiy, May 06 2016
a(n) ~ exp(n) * n^(n - 1/2) / (sqrt(Pi) * 2^(n + 1/2)). - Vaclav Kotesovec, Feb 20 2024

A369194 Number of labeled loop-graphs covering n vertices with at most n edges.

Original entry on oeis.org

1, 1, 4, 23, 199, 2313, 34015, 606407, 12712643, 306407645, 8346154699, 253476928293, 8490863621050, 310937199521774, 12356288017546937, 529516578044589407, 24339848939829286381, 1194495870124420574751, 62332449791125883072149, 3446265450868329833016605
Offset: 0

Views

Author

Gus Wiseman, Jan 17 2024

Keywords

Comments

Row-sums of left portion of A369199.

Examples

			The a(0) = 1 through a(3) = 23 loop-graphs (loops shown as singletons):
  {}  {{1}}  {{1,2}}      {{1},{2,3}}
             {{1},{2}}    {{2},{1,3}}
             {{1},{1,2}}  {{3},{1,2}}
             {{2},{1,2}}  {{1,2},{1,3}}
                          {{1,2},{2,3}}
                          {{1},{2},{3}}
                          {{1,3},{2,3}}
                          {{1},{2},{1,3}}
                          {{1},{2},{2,3}}
                          {{1},{3},{1,2}}
                          {{1},{3},{2,3}}
                          {{2},{3},{1,2}}
                          {{2},{3},{1,3}}
                          {{1},{1,2},{1,3}}
                          {{1},{1,2},{2,3}}
                          {{1},{1,3},{2,3}}
                          {{2},{1,2},{1,3}}
                          {{2},{1,2},{2,3}}
                          {{2},{1,3},{2,3}}
                          {{3},{1,2},{1,3}}
                          {{3},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1,2},{1,3},{2,3}}
		

Crossrefs

The minimal case is A001862, without loops A053530.
This is the covering case of A066383 and A369196, cf. A369192 and A369193.
The case of equality is A368597, without loops A367863.
The version without loops is A369191.
The connected case is A369197, without loops A129271.
The unlabeled version is A370169, equality A368599, non-covering A368598.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006125 counts simple graphs; also loop-graphs if shifted left.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A133686 counts choosable graphs, covering A367869.
A322661 counts covering loop-graphs, unlabeled A322700.
A367867 counts non-choosable graphs, covering A367868.
A368927 counts choosable loop-graphs, covering A369140.
A369141 counts non-choosable loop-graphs, covering A369142.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]], Length[Union@@#]==n&&Length[#]<=n&]],{n,0,5}]

Formula

Inverse binomial transform of A369196.

A001434 Number of graphs with n nodes and n edges.

Original entry on oeis.org

1, 0, 0, 1, 2, 6, 21, 65, 221, 771, 2769, 10250, 39243, 154658, 628635, 2632420, 11353457, 50411413, 230341716, 1082481189, 5228952960, 25945377057, 132140242356, 690238318754, 3694876952577, 20252697246580, 113578669178222, 651178533855913, 3813856010041981
Offset: 0

Views

Author

Keywords

Comments

The labeled version is A116508. - Gus Wiseman, Feb 22 2024

Examples

			From _Gus Wiseman_, Feb 22 2024: (Start)
Representatives of the a(0) = 1 through a(5) = 6 graphs:
  {}  .  .  {12,13,23}  {12,13,14,23}  {12,13,14,15,23}
                        {12,13,24,34}  {12,13,14,23,24}
                                       {12,13,14,23,25}
                                       {12,13,14,23,45}
                                       {12,13,14,25,35}
                                       {12,13,24,35,45}
(End)
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 146.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

The connected case is A001429, labeled A057500.
The covering case is A006649, labeled A367863.
Diagonal n = k of A008406.
The labeled version is A116508.
The version with loops is A368598, connected A368983.
Allowing up to n edges gives A370315, labeled A369192.
A000088 counts unlabeled graphs, labeled A006125.
A001349 counts unlabeled connected graphs, labeled A001187.
A002494 counts unlabeled covering graphs, labeled A006129.

Programs

  • Mathematica
    (* first do *) Needs["Combinatorica`"] (* then *) Table[ NumberOfGraphs[n, n], {n, 24}] (* Robert G. Wilson v, Mar 22 2011 *)
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{2}],{n}]]],{n,0,5}] (* Gus Wiseman, Feb 22 2024 *)
  • PARI
    a(n) = polcoef(G(n, O(x*x^n)), n) \\ G defined in A008406. - Andrew Howroyd, Feb 02 2024

Extensions

More terms from Vladeta Jovovic, Jan 07 2000
a(0)=1 prepended by Andrew Howroyd, Feb 02 2024

A263340 Triangle read by rows: T(n,k) is the number of graphs with n vertices containing k triangles.

Original entry on oeis.org

1, 1, 2, 3, 1, 7, 2, 1, 0, 1, 14, 7, 5, 2, 3, 1, 0, 1, 0, 0, 1, 38, 23, 28, 14, 18, 9, 7, 5, 4, 1, 4, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 107, 102, 141, 117, 123, 92, 80, 63, 49, 35, 35, 23, 15, 17, 10, 4, 9, 5, 2, 3, 3, 2, 2, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Christian Stump, Oct 15 2015

Keywords

Comments

Row sums give A000088.
First column is A006785.
Row lengths are 1 + binomial(n,3). - Geoffrey Critzer, Apr 13 2017

Examples

			Triangle begins:
  1;
  1;
  2;
  3,1;
  7,2,1,0,1;
  14,7,5,2,3,1,0,1,0,0,1;
  38,23,28,14,18,9,7,5,4,1,4,1,1,1,0,0,1,0,0,0,1;
  ...
		

Crossrefs

Row sums are A000088, labeled A006125.
Column k = 0 is A006785 (lab A213434), covering A372169 (lab A372168).
Counting edges gives A008406 (lab A084546), covering A370167 (lab A054548).
Row lengths are A050407.
The labeled version is A372170, covering A372167.
The covering case is A372173, sums A002494, labeled A006129.
Column k = 1 is A372194 (lab A372172), covering A372174 (lab A372171).
A001858 counts acyclic graphs, unlabeled A005195.
A372176 counts labeled graphs by directed cycles, covering A372175.

Programs

  • Mathematica
    Table[Table[Count[Table[Tr[MatrixPower[AdjacencyMatrix[GraphData[{n, i}]], 3]]/6, {i, 1, NumberOfGraphs[n]}], k], {k, 0, Binomial[n, 3]}], {n, 1, 7}] (* Geoffrey Critzer, Apr 13 2017 *)

Extensions

Row 7 from Geoffrey Critzer, Apr 13 2017
T(0,0)=1 prepended by Alois P. Heinz, Apr 13 2017

A368984 Number of graphs with loops (symmetric relations) on n unlabeled vertices in which each connected component has an equal number of vertices and edges.

Original entry on oeis.org

1, 1, 2, 5, 12, 29, 75, 191, 504, 1339, 3610, 9800, 26881, 74118, 205706, 573514, 1606107, 4513830, 12727944, 35989960, 102026638, 289877828, 825273050, 2353794251, 6724468631, 19239746730, 55123700591, 158133959239, 454168562921, 1305796834570, 3758088009136
Offset: 0

Views

Author

Andrew Howroyd, Jan 11 2024

Keywords

Comments

The graphs considered here can have loops but not parallel edges.
Also the number of unlabeled loop-graphs with n edges and n vertices such that it is possible to choose a different vertex from each edge. - Gus Wiseman, Jan 25 2024

Examples

			Representatives of the a(3) = 5 graphs are:
   {{1,2}, {1,3}, {2,3}},
   {{1}, {1,2}, {1,3}},
   {{1}, {1,2}, {2,3}},
   {{1}, {2}, {2,3}},
   {{1}, {2}, {3}}.
The graph with 4 vertices and edges {{1}, {2}, {1,2}, {3,4}} is included by A368599 but not by this sequence.
		

Crossrefs

The case of a unique choice is A000081.
Without loops we have A137917, labeled A137916.
The labeled version appears to be A333331.
Without the choice condition we have A368598, covering A368599.
The complement is counted by A368835, labeled A368596 (covering A368730).
Row sums of A368926, labeled A368924.
The connected case is A368983.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A000666 counts unlabeled loop-graphs, covering A322700.
A006125 counts simple graphs, unlabeled A000088.
A006129 counts covering graphs, connected A001187, unlabeled A002494.
A322661 counts labeled covering loop-graphs, connected A062740.

Programs

  • Mathematica
    brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]},{i,Length[p]}])],{p,Permutations[Range[Length[Union@@m]]]}]]];
    Table[Length[Union[brute/@Select[Subsets[Subsets[Range[n],{1,2}],{n}],Length[Select[Tuples[#],UnsameQ@@#&]]!=0&]]],{n,0,5}] (* Gus Wiseman, Jan 25 2024 *)

Formula

Euler transform of A368983.

A369142 Number of labeled loop-graphs covering {1..n} such that it is not possible to choose a different vertex from each edge (non-choosable).

Original entry on oeis.org

0, 0, 1, 22, 616, 26084, 1885323, 253923163, 66619551326, 34575180977552, 35680008747431929, 73392583275070667841, 301348381377662031986734, 2471956814761854578316988092, 40530184362443276558060719358471, 1328619783326799871747200601484790193
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2024

Keywords

Comments

Also labeled loop-graphs covering n vertices with at least one connected component containing more edges than vertices.

Examples

			The a(0) = 0 through a(3) = 22 loop-graphs (loops shown as singletons):
  .  .  {{1},{2},{1,2}}  {{1},{2},{3},{1,2}}
                         {{1},{2},{3},{1,3}}
                         {{1},{2},{3},{2,3}}
                         {{1},{2},{1,2},{1,3}}
                         {{1},{2},{1,2},{2,3}}
                         {{1},{2},{1,3},{2,3}}
                         {{1},{3},{1,2},{1,3}}
                         {{1},{3},{1,2},{2,3}}
                         {{1},{3},{1,3},{2,3}}
                         {{2},{3},{1,2},{1,3}}
                         {{2},{3},{1,2},{2,3}}
                         {{2},{3},{1,3},{2,3}}
                         {{1},{1,2},{1,3},{2,3}}
                         {{2},{1,2},{1,3},{2,3}}
                         {{3},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3}}
                         {{1},{2},{3},{1,2},{2,3}}
                         {{1},{2},{3},{1,3},{2,3}}
                         {{1},{2},{1,2},{1,3},{2,3}}
                         {{1},{3},{1,2},{1,3},{2,3}}
                         {{2},{3},{1,2},{1,3},{2,3}}
                         {{1},{2},{3},{1,2},{1,3},{2,3}}
		

Crossrefs

The version for a unique choice is A000272, unlabeled A000055.
Without the choice condition we have A006125, unlabeled A000088.
The case without loops is A367868, covering case of A367867.
For exactly n edges we have A368730, covering case of A368596.
The complement is counted by A369140, covering case of A368927.
This is the covering case of A369141.
For n edges and no loops we have A369144, covering A369143.
The unlabeled version is A369147, covering case of A369146.
A000085, A100861, A111924 count set partitions into singletons or pairs.
A006129 counts covering graphs, unlabeled A002494.
A054548 counts graphs covering n vertices with k edges, with loops A369199.
A129271 counts connected choosable graphs, unlabeled A005703.
A133686 counts choosable graphs, covering A367869.
A322661 counts covering loop-graphs, connected A062740, unlabeled A322700.
A367902 counts choosable set-systems, complement A367903.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]],Union@@#==Range[n]&&Length[Select[Tuples[#],UnsameQ@@#&]]==0&]],{n,0,5}]

Formula

Inverse binomial transform of A369141.
a(n) = A322661(n) - A369140(n). - Andrew Howroyd, Feb 02 2024

Extensions

a(6) onwards from Andrew Howroyd, Feb 02 2024

A372169 Number of unlabeled triangle-free graphs covering n vertices.

Original entry on oeis.org

1, 0, 1, 1, 4, 7, 24, 69, 303, 1487, 10275, 92899, 1157109, 19534822, 447074367, 13764681083, 567227701549, 31139379910949
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2024

Keywords

Comments

The labeled version is A372168.

Examples

			Non-isomorphic representatives of the a(5) = 7 graphs:
  12-35-45
  13-24-35-45
  14-25-35-45
  15-25-35-45
  12-13-24-35-45
  15-23-24-35-45
  13-14-23-24-35-45
		

Crossrefs

Dominated by A002494, labeled A006129.
Covering case of A006785, labeled A213434.
The connected case is A024607.
For all cycles (not just triangles) we have A144958, labeled A105784.
The labeled version is A372168.
For a unique triangle (labeled) we have A372171, non-covering A372172.
Column k = 0 of A372173, labeled A372167.
For a unique triangle (unlabeled) we have A372174, non-covering A372194.
A001858 counts acyclic graphs, unlabeled A005195.
A006125 counts simple graphs, unlabeled A000088.
A054548 counts covering graphs by number of edges, unlabeled A370167.
A372170 counts graphs by triangles, unlabeled A263340.

Formula

First differences of A006785.

A372170 Irregular triangle read by rows where T(n,k) is the number of labeled simple graphs with n vertices and exactly k triangles, 0 <= k <= binomial(n,3).

Original entry on oeis.org

1, 1, 2, 7, 1, 41, 16, 6, 0, 1, 388, 290, 195, 70, 40, 30, 0, 10, 0, 0, 1, 5789, 6980, 6910, 4560, 3030, 2292, 1230, 780, 600, 180, 236, 60, 45, 60, 0, 0, 15, 0, 0, 0, 1, 133501, 235270, 313705, 302505, 260890, 222509, 174615, 126780, 102970, 67165, 50134, 37485, 20370, 17990, 11445, 6552, 4515, 3570, 1680, 1785, 154, 735, 455, 140, 0, 105, 105, 0, 0, 0, 21, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 23 2024

Keywords

Examples

			Triangle begins:
     1
     1
     2
     7    1
    41   16    6    0    1
   388  290  195   70   40   30    0   10    0    0    1
   ...
For example, the T(4,1) = 16 graphs are:
  12-13-23
  12-14-24
  13-14-34
  23-24-34
  12-13-14-23
  12-13-14-24
  12-13-14-34
  12-13-23-24
  12-13-23-34
  12-14-23-24
  12-14-24-34
  12-23-24-34
  13-14-23-34
  13-14-24-34
  13-23-24-34
  14-23-24-34
		

Crossrefs

Row sums are A006125, covering A006129.
Row lengths are A050407.
Counting edges instead of triangles gives A084546, covering A054548.
Column k = 0 is A213434, covering A372168.
The unlabeled version is A263340.
The covering case is A372167, unlabeled A372173.
Column k = 1 is A372172, covering A372171.
For all cycles (not just triangles) we have A372176, covering A372175.
A001858 counts acyclic graphs, unlabeled A005195.
A367867 counts non-choosable graphs, covering A367868.
A372193 counts unicyclic graphs, unlabeled A236570, covering A372191.

Programs

  • Mathematica
    cys[y_]:=Select[Subsets[Union@@y,{3}],MemberQ[y,{#[[1]],#[[2]]}]&&MemberQ[y,{#[[1]],#[[3]]}]&&MemberQ[y,{#[[2]],#[[3]]}]&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]],Length[cys[#]]==k&]],{n,0,5},{k,0,Binomial[n,3]}]

Formula

Binomial transform of columns of A372167.

Extensions

a(42) onwards from Andrew Howroyd, Dec 29 2024

A372176 Irregular triangle read by rows where T(n,k) is the number of labeled simple graphs on n vertices with exactly 2k directed cycles of length > 2.

Original entry on oeis.org

1, 1, 2, 7, 1, 38, 19, 0, 6, 0, 0, 0, 1, 291, 317, 15, 220, 0, 0, 70, 55, 0, 0, 0, 0, 30, 15, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2024

Keywords

Comments

A directed cycle in a simple (undirected) graph is a sequence of distinct vertices, up to rotation, such that there are edges between all consecutive elements, including the last and the first.

Examples

			Triangle begins (zeros shown as dots):
   1
   1
   2
   7 1
   38 19 . 6 ... 1
   291 317 15 220 .. 70 55 .... 30 15 ........ 10 ............... 1
The T(4,3) = 6 graphs:
  12,13,14,23,24
  12,13,14,23,34
  12,13,14,24,34
  12,13,23,24,34
  12,14,23,24,34
  13,14,23,24,34
		

Crossrefs

Column k = 0 is A001858 (unlabeled A005195), covering A105784.
Row lengths are A002807 + 1.
Row sums are A006125, unlabeled A000088.
Counting edges instead of cycles gives A084546 (covering A054548), unlabeled A008406 (covering A370167).
Counting triangles instead of cycles gives A372170 (covering A372167), unlabeled A263340 (covering A372173).
The covering case is A372175.
Column k = 1 is A372193 (covering A372195), unlabeled A236570.
A006129 counts graphs, unlabeled A002494.
A322661 counts covering loop-graphs, unlabeled A322700.

Programs

  • Mathematica
    cyc[y_]:=Select[Join@@Table[Select[Join@@Permutations/@Subsets[Union@@y,{k}], And@@Table[MemberQ[Sort/@y,Sort[{#[[i]],#[[If[i==k,1,i+1]]]}]],{i,k}]&], {k,3,Length[y]}],Min@@#==First[#]&];
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[cyc[#]]==2k&]], {n,0,4}, {k,0,Length[cyc[Subsets[Range[n],{2}]]]/2}]
Previous Showing 31-40 of 113 results. Next