cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A122095 Primes p for which 8*p+1 divides 2^p-1.

Original entry on oeis.org

11, 29, 179, 239, 431, 761, 857, 941, 1367, 1667, 1871, 1877, 2411, 2837, 3041, 3119, 3329, 3347, 3767, 4289, 5021, 5087, 5231, 5261, 5717, 5861, 6449, 6917, 6959, 7079, 7211, 7919, 8429, 8741, 8867, 9341, 9461, 9851, 10211, 10979, 12107, 12437, 12479
Offset: 1

Views

Author

J. Lowell, Oct 17 2006

Keywords

Comments

The first 962 terms, all those with n<500000, are also in A023228. - R. J. Mathar, Oct 20 2006
All terms are in A023228, i.e., such that 8p+1 is prime, since a divisor of 8p+1 would also divide M(p)=A000225(p) and thus be of the form 2kp+1, but it is easily checked that 8p+1 cannot be a multiple of 2p+1 (nor of 4p+1 or 6p+1, of course). - M. F. Hasler, Mar 21 2011

Examples

			29 is in this sequence because 2^29-1 is divisible by 8 * 29 + 1 = 233.
		

Crossrefs

Programs

  • Maple
    isA122095 := proc(n) RETURN( isprime(n) and ( (2^n-1) mod (8*n+1)) = 0 ) ; end: n := 1 : for a from 2 to 500000 do if isA122095(a) then print(n,a) ; n := n+1 ; fi ; od ; # R. J. Mathar, Oct 20 2006
  • Mathematica
    Select[Prime[Range[1500]],Divisible[2^#-1,8#+1]&] (* Harvey P. Dale, Dec 18 2012 *)
    Select[Prime[Range[1500]],PowerMod[2,#,8#+1]==1&] (* Harvey P. Dale, May 28 2015 *)
  • PARI
    forprime( p=1,1e4, Mod(2,p*8+1)^p-1 || print1(p, ", "))

Extensions

More terms from R. J. Mathar, Oct 20 2006

A155151 Triangle T(n, k) = 4*n*k + 2*n + 2*k + 2, read by rows.

Original entry on oeis.org

10, 16, 26, 22, 36, 50, 28, 46, 64, 82, 34, 56, 78, 100, 122, 40, 66, 92, 118, 144, 170, 46, 76, 106, 136, 166, 196, 226, 52, 86, 120, 154, 188, 222, 256, 290, 58, 96, 134, 172, 210, 248, 286, 324, 362, 64, 106, 148, 190, 232, 274, 316, 358, 400, 442, 70, 116, 162
Offset: 1

Views

Author

Vincenzo Librandi, Jan 21 2009

Keywords

Comments

First column: A016957, second column: A017341, third column: 2*A017029, fourth column: A082286. - Vincenzo Librandi, Nov 21 2012
Conjecture: Let p = prime number. If 2^p belongs to the sequence, then 2^p-1 is not a Mersenne prime. - Vincenzo Librandi, Dec 12 2012
Conjecture is true because if T(n, k) = 2^p with p prime, then 2^p-1 = 4*n*k + 2*n + 2*k + 1 = (2*n+1)*(2*k+1) hence 2^p-1 is not prime. - Michel Marcus, May 31 2015
It appears that T(m,p) = 2^p for Lucasian primes (A002515) greater than 3. For instance: T(44, 11) = 2^11, T(89240, 23) = 2^23. - Michel Marcus, May 28 2015
For n > 1, ascending numbers along the diagonal are also terms of the even principal diagonal of a 2n X 2n spiral (A137928). - Avi Friedlich, May 21 2015

Examples

			Triangle begins
  10;
  16,  26;
  22,  36,  50;
  28,  46,  64,  82;
  34,  56,  78, 100, 122;
  40,  66,  92, 118, 144, 170;
  46,  76, 106, 136, 166, 196, 226;
  52,  86, 120, 154, 188, 222, 256, 290;
  58,  96, 134, 172, 210, 248, 286, 324, 362;
  64, 106, 148, 190, 232, 274, 316, 358, 400, 442;
		

Crossrefs

Programs

  • Magma
    [4*n*k + 2*n + 2*k + 2: k in [1..n], n in [1..11]]; // Vincenzo Librandi, Nov 21 2012
    
  • Maple
    seq(seq( 2*(2*n*k+n+k+1), k=1..n), n=1..15) # G. C. Greubel, Mar 21 2021
  • Mathematica
    T[n_,k_]:=4*n*k + 2*n + 2*k + 2; Table[T[n, k], {n, 11}, {k, n}]//Flatten (* Vincenzo Librandi, Nov 21 2012 *)
  • Sage
    flatten([[2*(2*n*k+n+k+1) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 21 2021

Formula

T(n, k) = 2*A144650(n, k).
Sum_{k=1..n} T(n,k) = n*(2*n^2 + 5*n + 3) = n*A014105(n+2) =

Extensions

Edited by Robert Hochberg, Jun 21 2010

A188133 Primes p such that 10p+1 divides 2^p-1.

Original entry on oeis.org

43, 487, 547, 571, 883, 1459, 1663, 1723, 2539, 3319, 3511, 4903, 5107, 5431, 6199, 6367, 8011, 8599, 9007, 9391, 9511, 10111, 11119, 11959, 12379, 12703, 13291, 13339, 13999, 14083, 14551, 14767, 15187, 15319, 15859, 15991, 16183, 16603, 16747, 17659, 18427, 19699
Offset: 1

Views

Author

M. F. Hasler, Mar 21 2011

Keywords

Comments

It is known that divisors of M(p)=2^p-1 are of the form 2kp+1. For k=1, these are the Lucasian primes A002515, for k=2 there are no such divisors, for k=3 these divisors are listed in A188130 and for k=4 in A122095.
The equivalent sequence of prime indices is 14, 93, 101, 105, 153, 232, 261, 269, ....
If k == 2 (mod 4), there are no such divisors in general and here there are no smaller k's than k = 5. - Karl-Heinz Hofmann, Jan 27 2022

Crossrefs

Cf. A002515 (k = 1), A188130 (k = 3), A122095 (k = 4), A350702 (k = 7).

Programs

  • Mathematica
    Select[Range[2*10^4], PrimeQ[#] && PowerMod[2, #, 10# + 1] == 1 &] (* Amiram Eldar, Nov 13 2019 *)
    Select[Prime[Range[2500]],PowerMod[2,#,10#+1]==1&] (* Harvey P. Dale, Dec 08 2024 *)
  • PARI
    forprime(p=1,1e5, Mod(2,p*10+1)^p-1 || print1(p", "))
    
  • Python
    from sympy import sieve
    print([p for p in sieve[1:10000] if pow(2,p,10*p+1) == 1])
    # Karl-Heinz Hofmann, Jan 27 2022

Formula

{p = A000040(i): 10*p+1 | A001348(i)}. - R. J. Mathar, Mar 21 2011

A374913 Numbers k such that k^(k + 1) == k + 1 (mod 2*k + 1).

Original entry on oeis.org

2, 3, 6, 11, 14, 15, 18, 23, 26, 30, 35, 39, 50, 51, 54, 63, 74, 75, 78, 83, 86, 90, 95, 98, 99, 111, 114, 119, 131, 134, 135, 138, 146, 155, 158, 174, 179, 183, 186, 191, 194, 198, 210, 215, 219, 230, 231, 239, 243, 251, 254, 270, 278, 299, 303, 306, 315, 323, 326, 330, 338, 350
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jul 23 2024

Keywords

Crossrefs

Supersequence of A002515 and A374914.
Cf. A374912.

Programs

  • Magma
    [n: n in [0..350] | n^(n+1) mod (2*n+1) eq n+1];
    
  • Mathematica
    Select[Range[350],Mod[#^(#+1),2#+1]==#+1 &] (* Stefano Spezia, Jul 23 2024 *)
  • PARI
    isok(k) = Mod(k, 2*k+1)^(k+1) == k+1; \\ Michel Marcus, Feb 05 2025

Formula

Conjecture (Superseeker): a(n) = A263458(n)/2. - R. J. Mathar, Aug 02 2024
The conjectured formula is false. There exist numbers k such that 2*k + 1 is composite and k^(k + 1) == k + 1 (mod 2*k + 1). For example, when k = 1023: 1023^1024 == 1024 (mod 2047) and 2047 = 23*89 is composite. - Jedrzej Miarecki, Jan 16 2025

A186522 Smallest prime factor of 2^n - 1 having the form k*n + 1.

Original entry on oeis.org

3, 7, 5, 31, 7, 127, 17, 73, 11, 23, 13, 8191, 43, 31, 17, 131071, 19, 524287, 41, 127, 23, 47, 241, 601, 2731, 262657, 29, 233, 31, 2147483647, 257, 599479, 43691, 71, 37, 223, 174763, 79, 41, 13367, 43, 431, 89, 631, 47, 2351, 97, 4432676798593, 251, 103, 53, 6361, 87211, 881, 113, 32377, 59, 179951, 61
Offset: 2

Views

Author

T. D. Noe, Feb 23 2011

Keywords

Comments

The values of k are in A186283.
From Zhi-Wei Sun, Dec 27 2016: (Start)
For any odd prime p, by Fermat's little theorem p = (p-1) + 1 divides 2^(p-1) - 1, and it is well-known that any prime divisor q of 2^p - 1 must be congruent to 1 modulo p.
Conjecture: a(n) exists for any integer n > 1 (verified for n = 2..300). (End)
Proof of the above conjecture: By Bang's theorem, for each n > 1 except 6 there exists an odd prime p such that the multiplicative order of 2 modulo p is n, and therefore n must divide p-1. Note that a(n) <= p. - Robert Israel and Thomas Ordowski, Sep 08 2017
For prime p, a(p) = 2p + 1 if and only if p is a Lucasian prime (A002515). - Thomas Ordowski, Sep 08 2017

Examples

			For n = 4, the prime factors of 2^n - 1 are 3 and 5, but only 5 has the form k * n + 1. Hence a(4) = 5.
a(254) = 56713727820156410577229101238628035243 since this prime number is equal to (2^127+1)/3 and congruent to 1 modulo 127, and 2^127 - 1 is a Mersenne prime.
a(257) = 535006138814359 since this is a prime congruent to 1 modulo 257 and 2^257 - 1 = 535006138814359*p*q with p = 1155685395246619182673033 and q = 374550598501810936581776630096313181393 both prime. - _Zhi-Wei Sun_, Dec 27 2016
		

Crossrefs

Cf. A000040, A000225, A060443 (all prime factors of 2^n-1).

Programs

  • Mathematica
    Table[p = First/@FactorInteger[2^n - 1]; Select[p, Mod[#1, n] == 1 &, 1][[1]], {n, 2, 60}]
  • PARI
    a(n)=my(s=if(n%2,2*n,n));forstep(p=s+1,2^n-1,s, if(Mod(2,p)^n==1&&isprime(p), return(p))) \\ Charles R Greathouse IV, Sep 07 2017
    
  • PARI
    a(n)=my(f=factor(2^n-1)[,1]); for(i=1,#f, if(f[i]%n==1, return(f[i]))) \\ Charles R Greathouse IV, Sep 07 2017

Formula

a(p - 1) = p for odd prime p. - Thomas Ordowski, Sep 04 2017
A002326((a(n)-1)/2) divides n for all n > 1. - Thomas Ordowski, Sep 07 2017
a(n) = A186283(n) * n + 1. - Max Alekseyev, Apr 27 2022

Extensions

Terms to a(300) in b-file from Zhi-Wei Sun, Dec 27 2016
a(301)-a(1200) in b-file from Charles R Greathouse IV, Sep 07 2017
a(1201)-a(1236) in b-file from Max Alekseyev, Apr 27 2022

A230809 Primes p of the form 60*n + 59 such that 2*p + 1 is also prime.

Original entry on oeis.org

179, 239, 359, 419, 659, 719, 1019, 1439, 1499, 1559, 2039, 2339, 2399, 2459, 2699, 2819, 2939, 3299, 3359, 3539, 3779, 4019, 4919, 5039, 5279, 5399, 5639, 6899, 7079, 9059, 9419, 9479, 9539, 10799, 11519, 11579, 11699, 11939, 12119, 12899, 12959, 13619
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 30 2013

Keywords

Comments

Primes p such that 2*p + 1 divides Lucas(p) and Mersenne(p).

Examples

			179 is in the sequence since it is prime and 359 is a factor of both Lucas(179) and Mersenne(179) = 2^179 - 1.
		

Crossrefs

Subsequence of A142799, of A215850, and of A239548. Cf. A000032, A001348, A002515.

Programs

  • Magma
    [p : p in [59..13619 by 60] | IsPrime(p) and IsPrime(2*p+1)];
    
  • PARI
    forstep(p=59, 13619, 60, if(isprime(p)&&isprime(2*p+1), print1(p, ", ")));

Formula

A005384 INTERSECT A142799.
A002515 INTERSECT A215850.

A291691 Primes p such that gpf(lpf(2^p - 1) - 1) = p.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 23, 29, 37, 43, 47, 53, 73, 79, 83, 97, 113, 131, 151, 173, 179, 181, 191, 197, 211, 223, 233, 239, 251, 263, 277, 281, 283, 307, 317, 337, 353, 359, 367, 383, 397, 419, 431, 439, 443, 457, 461, 463, 467, 487, 491, 499
Offset: 1

Views

Author

Thomas Ordowski, Aug 30 2017

Keywords

Comments

This sequence has not been proved to be infinite.
The terms p such that 2^p - 1 is a Mersenne prime are 2, 3, 5, 7, and 13.
If p is prime, then gpf(lpf(2^p - 1) - 1) >= p.
Primes q such that gpf(lpf(2^q - 1) - 1) > q are A292237.

Examples

			We have gpf(lpf(2^11 - 1) - 1) = gpf(23 - 1) = 11, so 11 is a term.
		

Crossrefs

Programs

  • Mathematica
    lpf[n_] := FactorInteger[n][[1, 1]]; gpf[n_] := FactorInteger[n][[-1, 1]]; Select[ Prime@ Range@ 45, gpf[lpf[2^# - 1] - 1] == # &] (* Giovanni Resta, Aug 30 2017 *)
  • PARI
    listp(nn) = forprime(p=2, nn, if (vecmax(factor(vecmin(factor(2^p-1)[,1])-1)[,1]) == p, print1(p, ", "));); \\ Michel Marcus, Aug 30 2017

Extensions

a(17)-a(26) from Michel Marcus, Aug 30 2017
a(27)-a(34) from Giovanni Resta, Aug 30 2017
a(35)-a(52) from Charles R Greathouse IV, Aug 30 2017

A350702 Primes p such that 14*p + 1 divides 2^p - 1.

Original entry on oeis.org

929, 1433, 2393, 2609, 2657, 4373, 4793, 6029, 7529, 10133, 10433, 10949, 10973, 13049, 13109, 16829, 18869, 20873, 22349, 23417, 24137, 26717, 27737, 27893, 28433, 28517, 30977, 33809, 33857, 37217, 38189, 38237, 39209, 39749, 41453, 41813, 42569, 43313, 43613
Offset: 1

Views

Author

Karl-Heinz Hofmann, Jan 27 2022

Keywords

Comments

Known divisors of Mersenne(p) (2^p-1 or Mp for short) are of the form 2*k*p+1. See crossrefs for other k's. If k == 2 (mod 4), there are no such divisors in general. Here k is 14/2 = 7.

Examples

			See LINKS for example of a(13).
		

Crossrefs

Cf. A002515 (k = 1), A188130 (k = 3), A122095 (k = 4), A188133 (k = 5).

Programs

  • Mathematica
    Select[Range[45000], PrimeQ[#] && PowerMod[2, #, 14*# + 1] == 1 &] (* Amiram Eldar, Jan 27 2022 *)
  • PARI
    forprime(p=1, 1e6, if (Mod(2, p*14+1)^p==1, print1(p,", ")))
    
  • Python
    from sympy import sieve
    print([p for p in sieve[1:1000000] if pow(2, p, 14*p+1) == 1])

Formula

{p = A000040(i): 14*p+1 | A001348(i)}.

A101320 Numbers k such that 4*k-1, 8*k-1, 16*k-1, 32*k-1, 64*k-1 and 128*k-1 are all primes.

Original entry on oeis.org

15855, 31785, 267300, 280665, 399675, 561330, 946050, 990510, 1022220, 1082115, 1164735, 1283250, 1303875, 1309545, 1514880, 1669065, 1924410, 2850225, 3078675, 3092760, 3492270, 3536385, 3611205, 3920670, 4148970, 4454775
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 23 2004

Keywords

Examples

			4*15855-1, 8*15855-1, 16*15855-1, 32*15855-1, 64*15855-1 and 128*15855-1 are primes, so 15855 is a term.
		

Crossrefs

Cf. A002515.
Subsequence of A005099, A005122, A101790, A101794 and A101994.

Programs

  • Mathematica
    Select[Range[10^6], And @@ PrimeQ[2^Range[2, 7]*# - 1] &] (* Amiram Eldar, May 23 2024 *)
  • PARI
    lista(nn) = for(n=1, nn, if(ispseudoprime(4*n-1) && ispseudoprime(8*n-1) && ispseudoprime(16*n-1) && ispseudoprime(32*n-1) && ispseudoprime(64*n-1) && ispseudoprime(128*n-1), print1(n, ", "))) \\ Iain Fox, Nov 23 2017

A101789 Safe primes of the form 8*k-1: primes of the form 8*k-1 such that 4*k-1 is also a prime.

Original entry on oeis.org

7, 23, 47, 167, 263, 359, 383, 479, 503, 719, 839, 863, 887, 983, 1319, 1367, 1439, 1487, 1823, 2039, 2063, 2207, 2447, 2879, 2903, 2999, 3023, 3119, 3167, 3623, 3863, 4007, 4079, 4127, 4679, 4703, 4799, 4919, 5087, 5399, 5639, 5807, 5879, 5927, 6047
Offset: 1

Views

Author

Douglas Stones (dssto1(AT)student.monash.edu.au), Dec 16 2004

Keywords

Examples

			4*1-1 = 3 and 8*1-1 = 7 are primes, so the first term is 7.
		

Crossrefs

Intersection of A005385 and A007522.
Cf. A002515.

Programs

  • Mathematica
    Select[Prime[Range[800]],Mod[#,8]==7&&PrimeQ[(#-1)/2]&] (* Harvey P. Dale, Jan 31 2012 *)
  • PARI
    is(k) = (k % 8 == 7) && isprime(k) && isprime(k\2); \\ Amiram Eldar, May 23 2024
Previous Showing 21-30 of 42 results. Next