cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 135 results. Next

A368152 Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 3 - x^2.

Original entry on oeis.org

1, 1, 3, 4, 6, 8, 7, 27, 25, 21, 19, 66, 126, 90, 55, 40, 204, 392, 504, 300, 144, 97, 522, 1363, 1884, 1851, 954, 377, 217, 1425, 4065, 7281, 8011, 6435, 2939, 987, 508, 3642, 12332, 24606, 34044, 31446, 21524, 8850, 2584, 1159, 9441, 35236, 82020, 127830
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2024

Keywords

Comments

Because (p(n,x)) is a strong divisibility sequence, for each integer k, the sequence (p(n,k)) is a strong divisibility sequence of integers.

Examples

			First eight rows:
    1
    1    3
    4    6    8
    7   27   25   21
   19   66  126   90   55
   40  204  392  504  300  144
   97  522 1363 1884 1851  954  377
  217 1425 4065 7281 8011 6435 2939 987
Row 4 represents the polynomial p(4,x) = 7 + 27*x + 25*x^2 + 21*x^3, so (T(4,k)) = (7,27,25,21), k=0..3.
		

Crossrefs

Cf. A006130 (column 1); A001906 (p(n,n-1)); A090017 (row sums), (p(n,1)); A002605 (alternating row sums), (p(n,-1)); A004187, (p(n,2)); A004254, (p(n,-2)); A190988, (p(n,3)); A190978 (unsigned), (p(n,-3)); A094440, A367208, A367209, A367210, A367211, A367297, A367298, A367299, A367300, A367301, A368150, A368151.

Programs

  • Mathematica
    p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 3 - x^2;
    p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
    Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
    Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]

Formula

p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where p(1,x) = 1, p(2,x) = 1 + 3*x, u = p(2,x), and v = 3 - x^2.
p(n,x) = k*(b^n - c^n), where k = -1/sqrt(13 + 6*x + 5*x^2), b = (1/2)*(3*x + 1 - 1/k), c = (1/2)*(3*x + 1 + 1/k).

A099177 a(n)=2a(n-1)+4a(n-2)-4a(n-3)-4a(n-4).

Original entry on oeis.org

0, 1, 2, 8, 20, 60, 160, 448, 1216, 3344, 9120, 24960, 68160, 186304, 508928, 1390592, 3799040, 10379520, 28357120, 77473792, 211661824, 578272256, 1579868160, 4316282880, 11792302080, 32217174016, 88018952192, 240472260608
Offset: 0

Views

Author

Paul Barry, Oct 02 2004

Keywords

Comments

Form the 6 node graph with matrix A=[1,1,1,1,0,0; 1,1,0,0,1,1; 1,0,0,0,0,0; 1,0,0,0,0,0; 0,1,0,0,0,0; 0,1,0,0,0,0]. Then A099177 counts walks of length n between the degree 5 vertices.

Crossrefs

Cf. A099176.

Programs

  • Mathematica
    LinearRecurrence[{2,4,-4,-4},{0,1,2,8},30] (* Harvey P. Dale, Feb 12 2023 *)

Formula

G.f.: x/((1-2x^2)(1-2x-2x^2)); a(n)=(3+sqrt(3))(1+sqrt(3))^n/12+(3-sqrt(3))(1-sqrt(3))^n/12-2^((n-4)/2)(1+(-1)^n); a(n)=A002605(n)/2-2^((n-4)/2)(1+(-1)^n).
a(n)=sum{k=0..floor((n+1)/2), binomial(n-k+1, k-1)2^(n-k)} - Paul Barry, Oct 23 2004

A189800 a(n) = 6*a(n-1) + 8*a(n-2), with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 6, 44, 312, 2224, 15840, 112832, 803712, 5724928, 40779264, 290475008, 2069084160, 14738305024, 104982503424, 747801460736, 5326668791808, 37942424436736, 270267896954880, 1925146777223168, 13713023838978048, 97679317251653632, 695780094221746176
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    I:=[0,1]; [n le 2 select I[n] else 6*Self(n-1)+8*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 14 2011
    
  • Mathematica
    LinearRecurrence[{6, 8}, {0, 1}, 50]
    CoefficientList[Series[-(x/(-1+6 x+8 x^2)),{x,0,50}],x] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    a(n)=([0,1; 8,6]^n*[0;1])[1,1] \\ Charles R Greathouse IV, Oct 03 2016

Formula

G.f.: x/(1 - 2*x*(3+4*x)). - Harvey P. Dale, Jul 26 2011

A293005 Number of associative, quasitrivial, and order-preserving binary operations on the n-element set {1,...,n}.

Original entry on oeis.org

0, 1, 4, 12, 34, 94, 258, 706, 1930, 5274, 14410, 39370, 107562, 293866, 802858, 2193450, 5992618, 16372138, 44729514, 122203306, 333865642, 912137898, 2492007082, 6808289962, 18600594090, 50817768106, 138836724394, 379308985002, 1036291418794, 2831200807594
Offset: 0

Views

Author

J. Devillet, Sep 28 2017

Keywords

Crossrefs

Programs

  • PARI
    concat(0, Vec(x*(1 + x) / ((1 - x)*(1 - 2*x - 2*x^2)) + O(x^30))) \\ Colin Barker, Sep 28 2017

Formula

G.f.: x(x+1) / (2x^3-3*x+1).
a(0) = 0, a(1) = 1, a(n+2)-2*a(n+1)-2*a(n) = 2.
3*a(n)+2 = Sum_{k>=0} (2*binomial(n,2*k)+3*binomial(n,2*k+1))*3^k.
From Colin Barker, Sep 28 2017: (Start)
a(n) = (-4 - (1-sqrt(3))^n*(-2+sqrt(3)) + (1+sqrt(3))^n*(2+sqrt(3))) / 6.
a(n) = 3*a(n-1) - 2*a(n-2) for n>2. (End)
E.g.f.: exp(x)*(2*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x) - 2)/3. - Stefano Spezia, Apr 11 2025

A293006 Expansion of 2*x^2*(x+1) / (2*x^3-3*x+1).

Original entry on oeis.org

0, 0, 2, 8, 24, 68, 188, 516, 1412, 3860, 10548, 28820, 78740, 215124, 587732, 1605716, 4386900, 11985236, 32744276, 89459028, 244406612, 667731284, 1824275796, 4984014164, 13616579924, 37201188180, 101635536212, 277673448788, 758617970004, 2072582837588
Offset: 0

Views

Author

J. Devillet, Sep 28 2017

Keywords

Comments

Number of associative, quasitrivial, and order-preserving binary operations on the n-element set {1,...,n} that have annihilator elements.

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = 3*a(n-1) - 2*a(n-3),a(0)=0,a(1)=0,a(2)=2,a(3)=8},a(n),remember):
    map(f, [$0..100]); # Robert Israel, Sep 28 2017
  • Mathematica
    Join[{0}, LinearRecurrence[{3, 0, -2}, {0, 2, 8}, 30]] (* Jean-François Alcover, Sep 19 2018 *)
  • PARI
    concat(vector(2), Vec(2*x^2*(1 + x) / ((1 - x)*(1 - 2*x - 2*x^2)) + O(x^30))) \\ Colin Barker, Sep 28 2017

Formula

a(n) = 2*A293005(n-1), a(0) = 0.
From Colin Barker, Sep 28 2017: (Start)
a(n) = (-8 + (1-sqrt(3))^(1+n) + (1+sqrt(3))^(1+n)) / 6 for n>0.
a(n) = 3*a(n-1) - 2*a(n-2) for n>3.
(End)

A293007 Expansion of 2*x^2 / (1-2*x-2*x^2).

Original entry on oeis.org

0, 0, 2, 4, 12, 32, 88, 240, 656, 1792, 4896, 13376, 36544, 99840, 272768, 745216, 2035968, 5562368, 15196672, 41518080, 113429504, 309895168, 846649344, 2313089024, 6319476736, 17265131520, 47169216512, 128868696064, 352075825152, 961889042432
Offset: 0

Views

Author

J. Devillet, Sep 28 2017

Keywords

Comments

Number of associative, quasitrivial, and order-preserving binary operations on the n-element set {1,...,n} that have neutral and annihilator elements.

Crossrefs

Essentially the same as A028860 and A152035.

Programs

  • PARI
    concat(vector(2), Vec(2*x^2 / (1-2*x-2*x^2) + O(x^50))) \\ Colin Barker, Sep 28 2017

Formula

a(n) = 2*A002605(n-1), a(0) = 0.
a(n) = A028860(n+1), a(0) = 0.
From Colin Barker, Sep 28 2017: (Start)
a(n) = ((1-sqrt(3))^n*(1+sqrt(3)) + (-1+sqrt(3))*(1+sqrt(3))^n) / (2*sqrt(3)) for n>0.
a(n) = 2*a(n-1) + 2*a(n-2) for n>2. (End)
E.g.f.: exp(x)*(cosh(sqrt(3)*x) - sinh(sqrt(3)*x)/sqrt(3)) - 1. - Stefano Spezia, Sep 05 2025

A342120 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of g.f. 1/(1 - k*x - k*x^2).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 6, 3, 0, 1, 4, 12, 16, 5, 0, 1, 5, 20, 45, 44, 8, 0, 1, 6, 30, 96, 171, 120, 13, 0, 1, 7, 42, 175, 464, 648, 328, 21, 0, 1, 8, 56, 288, 1025, 2240, 2457, 896, 34, 0, 1, 9, 72, 441, 1980, 6000, 10816, 9315, 2448, 55, 0
Offset: 0

Views

Author

Seiichi Manyama, Feb 28 2021

Keywords

Examples

			Square array begins:
  1, 1,   1,   1,    1,    1, ...
  0, 1,   2,   3,    4,    5, ...
  0, 2,   6,  12,   20,   30, ...
  0, 3,  16,  45,   96,  175, ...
  0, 5,  44, 171,  464, 1025, ...
  0, 8, 120, 648, 2240, 6000, ...
		

Crossrefs

Columns 0..10 give A000007, A000045(n+1), A002605(n+1), A030195(n+1), A057087, A057088, A057089, A057090, A057091, A057092, A057093.
Rows 0..2 give A000012, A001477, A002378.
Main diagonal gives A109516(n+1).

Programs

  • Maple
    T:= (n, k)-> (<<0|1>, >^(n+1))[1, 2]:
    seq(seq(T(n, d-n), n=0..d), d=0..12);  # Alois P. Heinz, Mar 01 2021
  • Mathematica
    T[n_, k_] := Sum[If[k == j == 0, 1, k^j] * Binomial[j, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Apr 28 2021 *)
  • PARI
    T(n, k) = sum(j=0, n\2, k^(n-j)*binomial(n-j, j));
    
  • PARI
    T(n, k) = sum(j=0, n, k^j*binomial(j, n-j));
    
  • PARI
    T(n, k) = round((-sqrt(k)*I)^n*polchebyshev(n, 2, sqrt(k)*I/2));

Formula

T(0,k) = 1, T(1,k) = k and T(n,k) = k*(T(n-1,k) + T(n-2,k)) for n > 1.
T(n,k) = Sum_{j=0..floor(n/2)} k^(n-j) * binomial(n-j,j) = Sum_{j=0..n} k^j * binomial(j,n-j).
T(n,k) = (-sqrt(k)*i)^n * S(n, sqrt(k)*i) with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind.

A355320 Irregular triangle T(n, k), n >= 0, -2*n <= k <= 2*n, read by rows; T(0, 0) = 1; for n > 0, T(n, k) is the sum of all terms in previous rows at one knight's move away.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 1, 0, 0, 2, 3, 2, 0, 2, 3, 2, 0, 0, 1, 1, 0, 0, 3, 4, 3, 1, 6, 8, 6, 1, 3, 4, 3, 0, 0, 1, 1, 0, 0, 4, 5, 4, 3, 12, 16, 12, 6, 12, 16, 12, 3, 4, 5, 4, 0, 0, 1, 1, 0, 0, 5, 6, 5, 6, 20, 27, 21, 18, 33, 44, 33, 18, 21, 27, 20, 6, 5, 6, 5, 0, 0, 1
Offset: 0

Views

Author

Rémy Sigrist, Jun 28 2022

Keywords

Comments

See A096608 for the right half of the triangle.
Odd terms form fractal patterns (see illustrations in Links section).

Examples

			Triangle T(n, k) begins:
                                 1
                           1  0  0  0  1
                     1  0  0  1  2  1  0  0  1
               1  0  0  2  3  2  0  2  3  2  0  0  1
         1  0  0  3  4  3  1  6  8  6  1  3  4  3  0  0  1
   1  0  0  4  5  4  3 12 16 12  6 12 16 12  3  4  5  4  0  0  1
		

Crossrefs

Programs

  • Mathematica
    A355320[rowmax_]:=Module[{T},T[0,0]=1;T[n_,k_]:=T[n,k]=If[k<=2n,T[n-1,Abs[k-2]]+T[n-2,Abs[k-1]]+T[n-1,k+2]+T[n-2,k+1],0];Table[T[n,Abs[k]],{n,0,rowmax},{k,-2n,2n}]]; A355320[10] (* Generates 11 rows *) (* Paolo Xausa, May 09 2023 *)
  • PARI
    row(n) = { my (rr=0, r=1); for (k=1, n, [rr,r]=[r,r*(1+'X^4)+rr*('X^3+'X^5)]); Vec(r) }

Formula

T(n, k) = A096608(n, abs(k)).
T(n, 0) = A096609(n).
T(n, 1) = A096610(n).
T(n, 2) = A096611(n).
T(n, n) = A096612(n).
T(n, 2*n) = 1.
T(n, 2*n-1) = T(n, 2*n-2) = 0 for any n > 0.
T(n, k) = T'(n-1, k-2) + T'(n-1, k+2) + T'(n-2, k-1) + T'(n-2, k+1) for n > 0 (where T' extends T with 0's outside its domain of definition).
T(n, -k) = T(n, k).
Sum_{k = -2*n..2*n} T(n, k) = A002605(n+1).

A074359 Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(2,2).

Original entry on oeis.org

0, 0, 0, 0, 12, 64, 280, 1088, 3968, 13856, 46912, 155136, 503616, 1610496, 5086336, 15895552, 49229312, 151275008, 461662208, 1400356864, 4224703488, 12683452416, 37911164928, 112865394688, 334788444160, 989756825600
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Coefficient of q^0 is A002605.

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=2, nu(2)=6, nu(3)=16+4q, nu(4)=44+20q+12q^2, nu(5)=120+80q+64q^2+40q^3+8q^4, so the coefficients of q^2 are 0,0,0,0,12,64.
		

Crossrefs

Coefficient of q^0, q^1 and q^3 are in A002605, A074358 and A074360. Related sequences with other values of b and lambda are in A074082-A074089, A074352-A074357, A074361-A074363.

Programs

  • Maple
    nu := proc(n,b,lambda) if n = 0 then 1 ; elif n = 1 then b ; else b*nu(n-1,b,lambda)+lambda*nu(n-2,b,lambda)*add(q^i,i=0..n-2) ; fi ; end: A074359 := proc(n) local b,lambda,thisnu ; b := 2 ; lambda := 2 ; thisnu := nu(n,b,lambda) ; RETURN( coeftayl(thisnu,q=0,2) ) ; end: for n from 0 to 40 do printf("%d, ",A074359(n) ) ; od ; # R. J. Mathar, Mar 20 2007
  • Mathematica
    Join[{0, 0}, LinearRecurrence[{6, -6, -16, 12, 24, 8}, {0, 0, 12, 64, 280, 1088}, 24]] (* Jean-François Alcover, Sep 23 2017 *)

Formula

Conjecture: O.g.f: 4*x^4*(-3+2*x+8*x^2+4*x^3)/(2*x^2+2*x-1)^3. - R. J. Mathar, Jul 22 2009

Extensions

More terms from R. J. Mathar, Mar 20 2007

A099173 Array, A(k,n), read by diagonals: g.f. of k-th row x/(1-2*x-(k-1)*x^2).

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 1, 2, 5, 8, 5, 0, 1, 2, 6, 12, 16, 6, 0, 1, 2, 7, 16, 29, 32, 7, 0, 1, 2, 8, 20, 44, 70, 64, 8, 0, 1, 2, 9, 24, 61, 120, 169, 128, 9, 0, 1, 2, 10, 28, 80, 182, 328, 408, 256, 10, 0, 1, 2, 11, 32, 101, 256, 547, 896, 985, 512, 11
Offset: 0

Views

Author

Ralf Stephan, Oct 13 2004

Keywords

Examples

			Square array, A(n, k), begins as:
  0, 1, 2,  3,  4,   5,    6,    7,     8, ... A001477;
  0, 1, 2,  4,  8,  16,   32,   64,   128, ... A000079;
  0, 1, 2,  5, 12,  29,   70,  169,   408, ... A000129;
  0, 1, 2,  6, 16,  44,  120,  328,   896, ... A002605;
  0, 1, 2,  7, 20,  61,  182,  547,  1640, ... A015518;
  0, 1, 2,  8, 24,  80,  256,  832,  2688, ... A063727;
  0, 1, 2,  9, 28, 101,  342, 1189,  4088, ... A002532;
  0, 1, 2, 10, 32, 124,  440, 1624,  5888, ... A083099;
  0, 1, 2, 11, 36, 149,  550, 2143,  8136, ... A015519;
  0, 1, 2, 12, 40, 176,  672, 2752, 10880, ... A003683;
  0, 1, 2, 13, 44, 205,  806, 3457, 14168, ... A002534;
  0, 1, 2, 14, 48, 236,  952, 4264, 18048, ... A083102;
  0, 1, 2, 15, 52, 269, 1110, 5179, 22568, ... A015520;
  0, 1, 2, 16, 56, 304, 1280, 6208, 27776, ... A091914;
Antidiagonal triangle, T(n, k), begins as:
  0;
  0,  1;
  0,  1,  2;
  0,  1,  2,  3;
  0,  1,  2,  4,  4;
  0,  1,  2,  5,  8,  5;
  0,  1,  2,  6, 12, 16,   6;
  0,  1,  2,  7, 16, 29,  32,   7;
  0,  1,  2,  8, 20, 44,  70,  64,   8;
  0,  1,  2,  9, 24, 61, 120, 169, 128,   9;
  0,  1,  2, 10, 28, 80, 182, 328, 408, 256,  10;
		

Crossrefs

Rows m: A001477 (m=0), A000079 (m=1), A000129 (m=2), A002605 (m=3), A015518 (m=4), A063727 (m=5), A002532 (m=6), A083099 (m=7), A015519 (m=8), A003683 (m=9), A002534 (m=10), A083102 (m=11), A015520 (m=12), A091914 (m=13).
Columns q: A000004 (q=0), A000012 (q=1), A009056 (q=2), A008586 (q=3).
Main diagonal gives A357502.

Programs

  • Magma
    A099173:= func< n,k | (&+[n^j*Binomial(k,2*j+1): j in [0..Floor(k/2)]]) >;
    [A099173(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
    
  • Mathematica
    A[k_, n_]:= Which[k==0, n, n==0, 0, True, ((1+Sqrt[k])^n - (1-Sqrt[k])^n)/(2 Sqrt[k])]; Table[A[k-n, n]//Simplify, {k, 0, 12}, {n, 0, k}]//Flatten (* Jean-François Alcover, Jan 21 2019 *)
  • PARI
    A(k,n)=sum(i=0,n\2,k^i*binomial(n,2*i+1))
    
  • SageMath
    def A099173(n,k): return sum( n^j*binomial(k, 2*j+1) for j in range((k//2)+1) )
    flatten([[A099173(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023

Formula

A(n, k) = Sum_{i=0..floor(k/2)} n^i * C(k, 2*i+1) (array).
Recurrence: A(n, k) = 2*A(n, k-1) + (n-1)*A(n, k-2), with A(n, 0) = 0, A(n, 1) = 1.
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n, n) = A357502(n).
A(n, k) = ((1+sqrt(n))^k - (1-sqrt(n))^k)/(2*sqrt(n)). - Jean-François Alcover, Jan 21 2019
Previous Showing 91-100 of 135 results. Next