A041001
Convolution of A000108(n+1), n >= 0, (Catalan numbers) with A038845 (3-fold convolution of powers of 4).
Original entry on oeis.org
1, 14, 125, 906, 5810, 34364, 191901, 1026610, 5312230, 26767940, 131990066, 639210404, 3048892740, 14354652152, 66828135005, 308078809794, 1408022619806, 6385966846580, 28765327498278, 128777533131500
Offset: 0
A143376
Triangle read by rows: T(n,k) is the number of unordered pairs of vertices at distance k in the cube Q_n of dimension n (1 <= k <= n).
Original entry on oeis.org
1, 4, 2, 12, 12, 4, 32, 48, 32, 8, 80, 160, 160, 80, 16, 192, 480, 640, 480, 192, 32, 448, 1344, 2240, 2240, 1344, 448, 64, 1024, 3584, 7168, 8960, 7168, 3584, 1024, 128, 2304, 9216, 21504, 32256, 32256, 21504, 9216, 2304, 256, 5120, 23040, 61440, 107520
Offset: 1
T(2,1)=4, T(2,2)=2 because in Q_2 (a square) there are 4 distances equal to 1 and 2 distances equal to 2.
Triangle starts:
1;
4, 2;
12, 12, 4;
32, 48, 32, 8;
80, 160, 160, 80, 16;
-
T:=proc(n,k) options operator, arrow: 2^(n-1)*binomial(n,k) end proc: for n to 10 do seq(T(n,k),k=1..n) end do; # yields sequence in triangular form
-
nn = 8; A[u_, z_] := (z + u z)/(1 - (z + u z));
Drop[Map[Select[#, # > 0 &] &, Map[Drop[#, 1] &,CoefficientList[Series[1/(1 - A[u, z]), {z, 0, nn}], {z, u}]]],1] // Grid (* Geoffrey Critzer, Mar 04 2017 *)
Flatten[Table[2^(n-1) Binomial[n, k], {n, 10},{k,n}]] (* Indranil Ghosh, Mar 06 2017 *)
-
tabl(nn) = {for (n=1, nn, for(k=1, n, print1(2^(n-1) * binomial(n, k),", ");); print();); };
tabl(10); \\ Indranil Ghosh, Mar 06 2017
-
import math
f=math.factorial
def C(n,r): return f(n) / f(r) / f(n-r)
i=1
for n in range(1,126):
for k in range(1,n+1):
print(str(i)+" "+str(2**(n-1)*C(n,k)))
i+=1 # Indranil Ghosh, Mar 06 2017
A038697
Convolution of A000917 with A000984 (central binomial coefficients).
Original entry on oeis.org
3, 26, 163, 894, 4558, 22196, 104739, 483062, 2189530, 9789900, 43295118, 189749676, 825364668, 3567219688, 15332925731, 65591312550, 279415474594, 1185903736412, 5016725589402, 21159849864964, 89012979703940
Offset: 0
A041005
Convolution of Catalan numbers A000108(n+1), n >= 0, with A020918.
Original entry on oeis.org
1, 16, 159, 1260, 8722, 55152, 326811, 1844084, 10015566, 52754624, 270976342, 1362986520, 6734927460, 32775704608, 157408497171, 747269225028, 3511471892470, 16351481223840, 75525932249922, 346305571781224
Offset: 0
A087449
a(n) = n * 4^(n-1) + (2*4^n + 1) / 3.
Original entry on oeis.org
1, 4, 19, 91, 427, 1963, 8875, 39595, 174763, 764587, 3320491, 14330539, 61516459, 262843051, 1118481067, 4742359723, 20043180715, 84467690155, 355050629803, 1488921995947, 6230565890731, 26021775190699, 108485147273899
Offset: 0
-
LinearRecurrence[{9,-24,16},{1,4,19},30] (* Harvey P. Dale, Apr 15 2018 *)
-
a(n) = my(p4 = 1<<(2*n)); n * p4 / 4 + (2*p4 + 1) / 3 \\ David A. Corneth, Apr 15 2018
A106691
Expansion of g.f. (1+x-2*x^2+x^3+x^4)/((1-x)^2*(1+x)^2*(1+2*x)^2).
Original entry on oeis.org
1, -3, 8, -17, 36, -71, 140, -269, 516, -979, 1852, -3481, 6516, -12127, 22444, -41253, 75236, -135915, 242716, -427185, 737876, -1242743, 2019468, -3106877, 4349636, -4971011, 2485500, 9942071, -49710284, 159072881, -437450388, 1113510059, -2704238684, 6362914533, -14634703396
Offset: 0
-
[(1/54)*(3*n +4 -27*(-1)^n*(n+4) +(-2)^(n+1)*(3*n-79)): n in [0..40]]; // G. C. Greubel, Sep 09 2021
-
CoefficientList[Series[(1+x-2x^2+x^3+x^4)/((1-x)^2(1+x)^2(1+2x)^2),{x,0,40}],x] (* or *) LinearRecurrence[{-4,-2,8,7,-4,-4},{1,-3,8,-17,36,-71},40] (* Harvey P. Dale, Dec 21 2015 *)
-
[(1/54)*(3*n +4 -27*(-1)^n*(n+4) +(-2)^(n+1)*(3*n-79)) for n in (0..40)] # G. C. Greubel, Sep 09 2021
A172978
a(n) = binomial(n+10, 10)*4^n.
Original entry on oeis.org
1, 44, 1056, 18304, 256256, 3075072, 32800768, 318636032, 2867724288, 24216338432, 193730707456, 1479398129664, 10848919617536, 76776969601024, 526470648692736, 3509804324618240, 22813728110018560, 144934272698941440, 901813252348968960, 5505807224867389440
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..157
- Index entries for linear recurrences with constant coefficients, signature (44,-880,10560,-84480,473088,-1892352,5406720,-10813440,14417920,-11534336,4194304).
-
[Binomial(n+10, 10)*4^n: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
-
Table[Binomial[n + 10, 10]*4^n, {n, 0, 20}]
A305833
Triangle read by rows: T(0,0)=1; T(n,k) = 4*T(n-1,k) + T(n-2,k-1) for k = 0..floor(n/2); T(n,k)=0 for n or k < 0.
Original entry on oeis.org
1, 4, 16, 1, 64, 8, 256, 48, 1, 1024, 256, 12, 4096, 1280, 96, 1, 16384, 6144, 640, 16, 65536, 28672, 3840, 160, 1, 262144, 131072, 21504, 1280, 20, 1048576, 589824, 114688, 8960, 240, 1, 4194304, 2621440, 589824, 57344, 2240, 24, 16777216, 11534336, 2949120, 344064, 17920, 336, 1
Offset: 0
Triangle begins:
1;
4;
16, 1;
64, 8;
256, 48, 1;
1024, 256, 12;
4096, 1280, 96, 1;
16384, 6144, 640, 16;
65536, 28672, 3840, 160, 1;
262144, 131072, 21504, 1280, 20;
1048576, 589824, 114688, 8960, 240, 1;
4194304, 2621440, 589824, 57344, 2240, 24;
16777216, 11534336, 2949120, 344064, 17920, 336, 1;
67108864, 50331648, 14417920, 1966080, 129024, 3584, 28;
- Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3, pp. 70, 72, 90, 373.
-
t[0, 0] = 1; t[n_, k_] := If[n < 0 || k < 0, 0, 4 t[n - 1, k] + t[n - 2, k - 1]]; Table[t[n, k], {n, 0, 12}, {k, 0, Floor[n/2]}] // Flatten
A362353
Triangle read by rows: T(n,k) = (-1)^(n-k)*binomial(n, k)*(k+3)^n, for n >= 0, and k = 0,1, ..., n. Coefficients of certain Sidi polynomials.
Original entry on oeis.org
1, -3, 4, 9, -32, 25, -27, 192, -375, 216, 81, -1024, 3750, -5184, 2401, -243, 5120, -31250, 77760, -84035, 32768, 729, -24576, 234375, -933120, 1764735, -1572864, 531441, -2187, 114688, -1640625, 9797760, -28824005, 44040192, -33480783, 10000000, 6561, -524288, 10937500, -94058496, 403536070, -939524096, 1205308188, -800000000, 214358881
Offset: 0
The triangle T begins:
n\k 0 1 2 3 4 5 6 7
0: 1
1: -3 4
2: 9 -32 25
3: -27 192 -375 216
4: 81 -1024 3750 -5184 2401
5: -243 5120 -31250 77760 -84035 32768
6: 729 -24576 234375 -933120 1764735 -1572864 531441
7: -2187 114688 -1640625 9797760 -28824005 44040192 -33480783 10000000
...
n = 8: 6561 -524288 10937500 -94058496 403536070 -939524096 1205308188 -800000000 2143588,
n = 9: -19683 2359296 -70312500 846526464 -5084554482 16911433728 -32543321076 36000000000 -21221529219 5159780352.
Columns k = 0..6 involve (see above):
A002697,
A007334,
A018215,
A081135,
A081144,
A128964,
A137352,
A139641,
A141413,
A173155,
A173191.
A368043
Triangle read by rows: T(n, k) = 2^(n + k).
Original entry on oeis.org
1, 2, 4, 4, 8, 16, 8, 16, 32, 64, 16, 32, 64, 128, 256, 32, 64, 128, 256, 512, 1024, 64, 128, 256, 512, 1024, 2048, 4096, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144
Offset: 0
[0] [ 1]
[1] [ 2, 4]
[2] [ 4, 8, 16]
[3] [ 8, 16, 32, 64]
[4] [ 16, 32, 64, 128, 256]
[5] [ 32, 64, 128, 256, 512, 1024]
[6] [ 64, 128, 256, 512, 1024, 2048, 4096]
[7] [128, 256, 512, 1024, 2048, 4096, 8192, 16384]
[8] [256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536]
Cf.
A000079 (T(n,0)),
A004171 (T(n,n-1)),
A000302 (T(n,n)),
A171476 (row sums),
A003683 (alternating row sums),
A134353 (antidiagonal sums),
A001018 (T(2n, n)),
A094014 (T(n, n/2)),
A002697.
-
Array[2^Range[#,2#]&,10,0] (* Paolo Xausa, Dec 09 2023 *)
-
from functools import cache
@cache
def T_row(n: int) -> list[int]:
if n == 0: return [1]
row = T_row(n - 1) + [0]
for k in range(n): row[k] *= 2
row[n] = row[n - 1] * 2
return row
for n in range(11): print(T_row(n))
Comments