A090299
Table T(n,k), n>=0 and k>=0, read by antidiagonals : the k-th column given by the k-th polynomial K_k related to A090285.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 10, 5, 1, 14, 35, 22, 7, 1, 42, 126, 93, 38, 9, 1, 132, 462, 386, 187, 58, 11, 1, 429, 1716, 1586, 874, 325, 82, 13, 1, 1430, 6435, 6476, 3958, 1686, 515, 110, 15, 1, 4862, 24310, 26333, 17548, 8330, 2934, 765, 142, 17, 1
Offset: 0
row n=0 : 1, 1, 2, 5, 14, 42, 132, 429, ... see A000108.
row n=1 : 1, 3, 10, 35, 126, 462, 1716, 6435, ... see A001700.
row n=2 : 1, 5, 22, 93, 386, 1586, 6476, ... see A000346.
row n=3 : 1, 7, 38, 187, 874, 3958, 17548, ... see A000531.
row n=4 : 1, 9, 58, 325, 1686, 8330, 39796, ... see A018218.
Other rows :
A029887,
A042941,
A045724,
A042985,
A045492. Columns :
A000012,
A005408. Row n is the convolution of the row (n-j) with
A000984,
A000302,
A002457,
A002697 (first term omitted),
A002802,
A038845,
A020918,
A038846,
A020920 for j=1, 2, ..9 respectively.
Corrected by Alford Arnold, Oct 18 2006
A133789
Let P(A) denote the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, 1) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 2) x and y intersect but for which x is not a subset of y and y is not a subset of x.
Original entry on oeis.org
0, 1, 4, 16, 70, 316, 1414, 6196, 26590, 112156, 466774, 1923076, 7863310, 31972396, 129459334, 522571156, 2104535230, 8460991036, 33972711094, 136277478436, 546270602350, 2188566048076, 8764718254054, 35090241492916, 140455083984670, 562102715143516
Offset: 0
a(3) = 16 because for P(A) = {{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}} we see that
{1} and {2},
{1} and {3},
{2} and {3},
{1} and {2,3},
{2} and {1,3},
{3} and {1,2}
are disjoint, while
{} and {1},
{} and {2},
{} and {3},
{} and {1,2},
{} and {1,3},
{} and {2,3},
{} and {1,2,3}
are disjoint and one is a subset of the other and
{1,2} and {1,3},
{1,2} and {2,3},
{1,3} and {2,3}
are intersecting, but neither is a subset of the other.
Also, through row 8 of Pascal's triangle the a(3)=16 even entries are 2 (so a(0)=0 and a(1)=1) then 4,6,4 (so a(2)=4) then 10,10 then 6,20,6 then 8,28,56,70,56,28,8. [_Aaron Meyerowitz_, Oct 29 2013]
Edited by
N. J. A. Sloane, Jan 20 2008 to incorporate suggestions from several contributors.
A228310
The hyper-Wiener index of the hypercube graph Q(n) (n>=2).
Original entry on oeis.org
10, 72, 448, 2560, 13824, 71680, 360448, 1769472, 8519680, 40370176, 188743680, 872415232, 3992977408, 18119393280, 81604378624, 365072220160, 1623497637888, 7181185318912, 31610959298560, 138538465099776, 604731395276800, 2630031813640192
Offset: 2
- Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993 (p. 161).
- R. Balakrishnan, N. Sridharan and K. Viswanathan Iyer,, The Wiener index of odd graphs, J. Ind. Inst. Sci., vol. 86, no. 5, 2006. [Cached copy]
- Eric Weisstein's World of Mathematics, Hypercube Graph.
- Index entries for linear recurrences with constant coefficients, signature (12,-48,64)
-
a := proc (n) options operator, arrow: 4^(n-2)*n*(3+n) end proc: seq(a(n), n = 2 .. 25);
-
LinearRecurrence[{12,-48,64},{10,72,448},30] (* Harvey P. Dale, Dec 13 2024 *)
A254630
Ascending antidiagonal numerators of the table of repeated differences of A164558(n)/A027642(n).
Original entry on oeis.org
1, 1, 3, 1, 2, 13, 0, 1, 5, 3, -1, -1, 2, 29, 119, 0, -1, -1, 1, 31, 5, 1, 1, -1, -8, -1, 43, 253, 0, 1, 1, 4, -4, -1, 41, 7, -1, -1, -1, 4, 8, 4, -1, 29, 239, 0, -1, -1, -8, -4, 4, 8, 1, 31, 9, 5, 5, 7, -4, -116, -32, -116, -4, 7, 71, 665, 0
Offset: 0
Cf.
A027641,
A027642,
A074909,
A085737,
A085738,
A104002,
A157809,
A157920,
A157930,
A157945,
A157946,
A157965,
A164555,
A164558,
A190339,
A158302,
A181131 (numerators and denominators of the main diagonal).
-
nmax = 11; A164558 = Table[BernoulliB[n,2], {n, 0, nmax}]; D164558 = Table[ Differences[A164558, n], {n, 0, nmax}]; Table[ D164558[[n-k+1, k+1]] // Numerator, {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 04 2015 *)
A320531
T(n,k) = n*k^(n - 1), k > 0, with T(n,0) = A063524(n), square array read by antidiagonals upwards.
Original entry on oeis.org
0, 1, 0, 0, 1, 0, 0, 2, 1, 0, 0, 3, 4, 1, 0, 0, 4, 12, 6, 1, 0, 0, 5, 32, 27, 8, 1, 0, 0, 6, 80, 108, 48, 10, 1, 0, 0, 7, 192, 405, 256, 75, 12, 1, 0, 0, 8, 448, 1458, 1280, 500, 108, 14, 1, 0, 0, 9, 1024, 5103, 6144, 3125, 864, 147, 16, 1, 0, 0, 10, 2304
Offset: 0
Square array begins:
0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, 14, ... A005843
0, 3, 12, 27, 48, 75, 108, 147, ... A033428
0, 4, 32, 108, 256, 500, 864, 1372, ... A033430
0, 5, 80, 405, 1280, 3125, 6480, 12005, ... A269792
0, 6, 192, 1458, 6144, 18750, 46656, 100842, ...
0, 7, 448, 5103, 28672, 109375, 326592, 823543, ...
...
T(3,2) = 3*2^(3 - 1) = 12. The corresponding binary words are 110101, 110110, 111001, 111010, 011101, 011110, 101101, 101110, 010111, 011011, 100111, 101011.
- Louis H. Kauffman, Formal Knot Theory, Princeton University Press, 1983.
- Louis H. Kauffman, State models and the Jones polynomial, Topology, Vol. 26 (1987), 395-407.
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
- Alexander Stoimenow, Everywhere Equivalent 2-Component Links, Symmetry Vol. 7 (2015), 365-375.
- Wikipedia, Pretzel link
-
T[n_, k_] = If [k > 0, n*k^(n - 1), If[k == 0 && n == 1, 1, 0]];
Table[Table[T[n - k, k], {k, 0, n}], {n, 0, 12}]//Flatten
-
T(n, k) := if k > 0 then n*k^(n - 1) else if k = 0 and n = 1 then 1 else 0$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, nn))$
Original entry on oeis.org
1, 7, 34, 150, 628, 2540, 10024, 38840, 148368, 560368, 2096928, 7786592, 28726592, 105390272, 384788096, 1398978432, 5067403520, 18294707968, 65854095872, 236421150208, 846732997632, 3025927678976, 10792083499008, 38420157773824, 136547503083520, 484546494459904, 1716976084393984
Offset: 0
For n = 4, a(4) = 8*a(3)-20*a(2)+16*a(1)-4*a(0) = 8*150-20*34+16*7-4*1 = 628.
-
f:=x->x*(1-x)/(1-2*x^2):g:=x->(x)/(1-4*x)^2:
C:=n->coeff(series(g(f(x))/x,x,n+1),x,n): seq(C(n),n=0..30);
A339240
a(n) = n*2^(2*n-2) + n*binomial(2*n,n)/2.
Original entry on oeis.org
0, 2, 14, 78, 396, 1910, 8916, 40684, 182552, 808614, 3545220, 15414212, 66556584, 285707708, 1220340296, 5189913240, 21988512304, 92850096902, 390913863012, 1641450064084, 6876023427080, 28741451864916, 119902111845208, 499304732388968, 2075821104461136, 8617006998238300
Offset: 0
-
a[n_] := n*(2^(2*n - 2) + Binomial[2*n, n]/2); Array[a, 26, 0] (* Amiram Eldar, Nov 28 2020 *)
-
a(n) = n*2^(2*n-2) + n*binomial(2*n,n)/2;
-
a(n) = sum(k=0, n, binomial(n,k)*k*sum(j=0, k, binomial(n, j)));
A348175
Irregular table T(n,k) read by rows: T(n,k) = T(n-1,k/2) when k is even and 3*T(n-1,(k-1)/2) + 2^(n-1) when k is odd. T(0,0) = 0 and 0 <= k <= 2^n-1.
Original entry on oeis.org
0, 0, 1, 0, 2, 1, 5, 0, 4, 2, 10, 1, 7, 5, 19, 0, 8, 4, 20, 2, 14, 10, 38, 1, 11, 7, 29, 5, 23, 19, 65, 0, 16, 8, 40, 4, 28, 20, 76, 2, 22, 14, 58, 10, 46, 38, 130, 1, 19, 11, 49, 7, 37, 29, 103, 5, 31, 23, 85, 19, 73, 65, 211
Offset: 0
n\k 0 1 2 3 4 5 6 7
0 0
1 0 1
2 0 2 1 5
3 0 4 2 10 1 7 5 19
-
T[0, 0] = 0; T[n_, k_] := T[n, k] = If[EvenQ[k], T[n - 1, k/2], 3*T[n - 1, (k - 1)/2] + 2^(n - 1)]; Table[T[n, k], {n, 0, 5}, {k, 0, 2^n - 1}] // Flatten (* Amiram Eldar, Oct 11 2021 *)
-
T(n, k) = if ((n==0) && (k==0), 0, if (k%2, 3*T(n-1,(k-1)/2) + 2^(n-1), T(n-1,k/2)));
tabf(nn) = for (n=0, nn, for (k=0, 2^n-1, print1(T(n,k), ", ")); print); \\ Michel Marcus, Oct 18 2021
-
T(n,k) = my(ret=0); for(i=0,n-1, if(bittest(k,n-1-i), ret=3*ret+1<Kevin Ryde, Oct 22 2021
A378504
Expansion of (Sum_{k>=0} binomial(3*k,k) * x^k)^4.
Original entry on oeis.org
1, 12, 114, 984, 8055, 63744, 492702, 3742704, 28053423, 208057260, 1529802648, 11168142048, 81041199876, 585045970992, 4204705925670, 30101448952032, 214756404746031, 1527491122906212, 10834911076417458, 76666402505673720, 541277205506059743
Offset: 0
-
nmax = 20; CoefficientList[Series[Sum[Binomial[3*k, k] * x^k, {k, 0, nmax}]^4, {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 23 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, binomial(3*k, k)*x^k)^4)
Comments