cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 37 results. Next

A002728 Number of n X (n+2) binary matrices.

Original entry on oeis.org

1, 4, 22, 190, 3250, 136758, 17256831, 7216495370, 10271202313659, 49856692830176512, 826297617412284162618, 46948445432190686211183650, 9200267975562856184153936960940, 6261904454889790650636380541051266410, 14910331834338546882501064075429145637985605
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of the array A(m,n) described in A028657. - N. J. A. Sloane, Sep 01 2013

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    a:= n-> add(add(2^add(add(igcd(i, j)* coeff(s, x, i)*
          coeff(t, x, j), j=1..degree(t)), i=1..degree(s))/
          mul(i^coeff(s, x, i)*coeff(s, x, i)!, i=1..degree(s))/
          mul(i^coeff(t, x, i)*coeff(t, x, i)!, i=1..degree(t)),
          t=b(n+2$2)), s=b(n$2)):
    seq(a(n), n=0..12);  # Alois P. Heinz, Aug 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Table[Function[{p}, p + j*x^i]@ b[n-i*j, i-1] , {j, 0, n/i}]]] // Flatten; a[n_] := Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+2, n+2]}], {s, b[n, n]}]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 28 2014, after Alois P. Heinz *)
  • PARI
    a(n) = A(n+2,n) \\ A defined in A028657. - Andrew Howroyd, Mar 01 2023

Formula

a(n) = sum {1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n+2} (fix A[s_1, s_2, ...;t_1, t_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fix A[...] = 2^sum {i, j>=1} (gcd(i, j)*s_i*t_j). - Sean A. Irvine, Jul 31 2014

Extensions

More terms from Vladeta Jovovic, Feb 04 2000

A053305 Number of 8 X 8 binary matrices with n=0..64 ones up to row and column permutations.

Original entry on oeis.org

1, 1, 3, 6, 16, 34, 90, 211, 558, 1371, 3601, 9209, 24110, 61740, 157559, 390832, 946490, 2206364, 4948194, 10591141, 21606125, 41821936, 76738813, 133157386, 218402867, 338187004, 494330780, 681660841, 886842587, 1088201827
Offset: 0

Views

Author

Vladeta Jovovic, Mar 05 2000

Keywords

Crossrefs

Row 8 of A052371 and A321609.

Programs

  • PARI
    \\ See A321609 for M.
    vector(65, n, M(8, 8, n-1))

Formula

a(n) = A049311(n) for n <= 8.
Sum_{n=0..64} a(n) = 14685630688 = A002724(8).

A058003 Number of 5 X 5 matrices with entries mod n, up to row and column permutation.

Original entry on oeis.org

1, 5624, 64796982, 79846389608, 20834113243925, 1979525296377132, 93242242505023122, 2625154125717590496, 49871029909245781491, 694584034909225304800, 7525039263469551291908, 66252712846754819753160
Offset: 1

Views

Author

Vladeta Jovovic, Nov 04 2000

Keywords

Comments

Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively.

Crossrefs

Formula

a(n)=(1/5!^2)*(n^25 + 20*n^20 + 100*n^17 + 70*n^15 + 300*n^14 + 225*n^13 + 400*n^12 + 400*n^11 + 100*n^10 + 1600*n^9 + 2300*n^8 + 1300*n^7 + 1200*n^6 + 1824*n^5 + 480*n^4 + 1680*n^3 + 2400*n^2).

Extensions

More terms from James Sellers, Nov 08 2000

A123234 Number of n X n Latin squares up to row and column permutation (or "RC-equivalence").

Original entry on oeis.org

1, 1, 1, 4, 16, 1868, 2420400, 66915816462
Offset: 1

Views

Author

Dan Eilers, Oct 06 2006

Keywords

Comments

Brendan McKay writes: (Start)
"It would be possible to find the counts for n=9 and n=10 using the method of my paper in JCD [see link below]. For n=10 it is probably a 24-digit number. I'll explain the method I used. See the paper above for terminology.
"Is(L) is the autotopism group. Also define the group RC(L) of all autotopisms for which the symbols component is the identity. For any Latin square L we have:
"The isotopy class containing L contains (n!)^3/|Is(L)| squares.
"The RC-equivalence class containing L contains (n!)^2/|RC(L)| squares.
"If L and L' are isotopic then |RC(L)| = |RC(L')|. Therefore the number of RC-equivalence classes in the isotopy class of L is n!*|RC(L)|/|Is(L)|. I modified an existing program slightly to find |RC(L)|/|Is(L)|. and applied it to one square from each isotopy class. The sum of n!*|RC(L)|/|Is(L)| is the total number of RC-equivalence classes. " (End)

Examples

			01234 => 20413 => 01234
13042 => 01234 => 14320
24310 => 32041 => 20413
30421 => 43102 => 32041
42103 => 14320 => 43102
The first square is transformed by permuting columns; the 2nd square is transformed by permuting rows.
Both the first and 3rd square are in reduced form, so are considered equivalent by row/col permutation.
		

References

  • Dan R. Eilers, Phil A. Sallee, The number of Latin squares up to row and column permutation, Poster Session, Harvey Mudd College Mathematics Conference on Enumerative Combinatorics (2006) (for terms 1 to 7)
  • Brendan D. McKay, private communication (2006) (for term 8)

Crossrefs

A321609 Array read by antidiagonals: T(n,k) is the number of inequivalent binary n X n matrices with k ones, under row and column permutations.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 3, 1, 1, 0, 0, 1, 3, 1, 1, 0, 0, 1, 6, 3, 1, 1, 0, 0, 0, 7, 6, 3, 1, 1, 0, 0, 0, 7, 16, 6, 3, 1, 1, 0, 0, 0, 6, 21, 16, 6, 3, 1, 1, 0, 0, 0, 3, 39, 34, 16, 6, 3, 1, 1, 0, 0, 0, 1, 44, 69, 34, 16, 6, 3, 1, 1, 0, 0, 0, 1, 55, 130, 90, 34, 16, 6, 3, 1, 1
Offset: 0

Views

Author

Andrew Howroyd, Nov 14 2018

Keywords

Examples

			Array begins:
==========================================================
n\k| 0  1  2  3  4  5  6   7   8    9   10    11    12
---+------------------------------------------------------
0  | 1  0  0  0  0  0  0   0   0    0    0     0     0 ...
1  | 1  1  0  0  0  0  0   0   0    0    0     0     0 ...
2  | 1  1  3  1  1  0  0   0   0    0    0     0     0 ...
3  | 1  1  3  6  7  7  6   3   1    1    0     0     0 ...
4  | 1  1  3  6 16 21 39  44  55   44   39    21    16 ...
5  | 1  1  3  6 16 34 69 130 234  367  527   669   755 ...
6  | 1  1  3  6 16 34 90 182 425  870 1799  3323  5973 ...
7  | 1  1  3  6 16 34 90 211 515 1229 2960  6893 15753 ...
8  | 1  1  3  6 16 34 90 211 558 1371 3601  9209 24110 ...
9  | 1  1  3  6 16 34 90 211 558 1430 3825 10278 28427 ...
...
		

Crossrefs

Rows n=6..8 are A052370, A053304, A053305.
Main diagonal is A049311.
Row sums are A002724.
Cf. A052371 (as triangle), A057150, A246106, A318795.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[Product[Product[(1 + O[x]^(k + 1) + x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}], {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s = 0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)]
    Table[M[n - k, n - k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 10 2019, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    c(p, q, k)={polcoef(prod(i=1, #p, prod(j=1, #q, (1 + x^lcm(p[i], q[j]) + O(x*x^k))^gcd(p[i], q[j]))), k)}
    M(m, n, k)={my(s=0); forpart(p=m, forpart(q=n, s+=permcount(p) * permcount(q) * c(p, q, k))); s/(m!*n!)}
    for(n=0, 10, for(k=0, 12, print1(M(n, n, k), ", ")); print); \\ Andrew Howroyd, Nov 14 2018

Formula

T(n,k) = T(k,k) for n > k.
T(n,k) = 0 for k > n^2.

A052370 Number of 6 X 6 binary matrices with n=0...36 ones up to row and column permutations.

Original entry on oeis.org

1, 1, 3, 6, 16, 34, 90, 182, 425, 870, 1799, 3323, 5973, 9595, 14570, 19865, 25191, 28706, 30310, 28706, 25191, 19865, 14570, 9595, 5973, 3323, 1799, 870, 425, 182, 90, 34, 16, 6, 3, 1, 1
Offset: 0

Views

Author

Vladeta Jovovic, Mar 08 2000

Keywords

Comments

Sum_{k=0..36}a(n)=A002724(6)

Crossrefs

A058002 Number of 4 X 4 matrices with entries mod n, up to row and column permutation.

Original entry on oeis.org

1, 317, 90492, 7880456, 270656150, 4947097821, 58002778967, 490172624992, 3223155968811, 17382581357725, 79840867013666, 321169288917192, 1155731257886192, 3782368364610941, 11406226119319725, 32031530635953536, 84493500676300117, 210856844364222717
Offset: 1

Views

Author

Vladeta Jovovic, Nov 04 2000

Keywords

Comments

Number of k X l matrices with entries mod n, up to row and column permutation is Z(S_k X S_l; n,n,...) where Z(S_k X S_l; x_1,x_2,...) is cycle index of Cartesian product of symmetric groups S_k and S_l of degree k and l, respectively.

Crossrefs

Formula

a(n)=(1/4!^2)*(n^16 + 12*n^12 + 36*n^10 + 67*n^8 + 160*n^6 + 204*n^4 + 96*n^2).
G.f.: -x*(x +1)*(x^14 +299*x^13 +84940*x^12 +6299584*x^11 +142482546*x^10 +1214416453*x^9 +4351647617*x^8 +6732281120*x^7 +4351647617*x^6 +1214416453*x^5 +142482546*x^4 +6299584*x^3 +84940*x^2 +299*x +1) / (x -1)^17. - Colin Barker, Jul 09 2013

Extensions

More terms from Colin Barker, Jul 09 2013

A241956 Number of inequivalent m X n binary matrices, where equivalence means permutations of rows or columns. Presented in diagonal order, with (m,n)=(1,1), (1,2), (2,1), (1,3), (2,2), (3,1), ... .

Original entry on oeis.org

2, 3, 3, 4, 7, 4, 5, 13, 13, 5, 6, 22, 36, 22, 6, 7, 34, 87, 87, 34, 7, 8, 50, 190, 317, 190, 50, 8, 9, 70, 386, 1053, 1053, 386, 70, 9, 10, 95, 734, 3250, 5624, 3250, 734, 95, 10, 11, 125, 1324, 9343, 28576, 28576, 9343, 1324, 125, 11
Offset: 1

Views

Author

Don Knuth, Aug 09 2014

Keywords

Comments

Same as A028657 without first row and column.

Examples

			The array begins:
  2  3    4     5      6        7         8           9 ...
  3  7   13    22     34       50        70          95 ...
  4 13   36    87    190      386       734        1324 ...
  5 22   87   317   1053     3250      9343       25207 ...
  6 34  190  1053   5624    28576    136758      613894 ...
  7 50  386  3250  28576   251610   2141733    17256831 ...
  8 70  734  9343 136758  2141733  33642660   508147108 ...
  9 95 1324 25207 613894 17256831 508147108 14685630688 ...
  (cf. A028657).
		

Crossrefs

Cf. A002724.

Programs

  • Maple
    b:= proc(n, i) b(n, i):= `if`(n=0, [[]], `if`(i<1, [], [seq(map(
          p->`if`(j=0, p, [p[], [i, j]]), b(n-i*j, i-1))[], j=0..n/i)]))
        end:
    g:= proc(n, k) option remember; add(add(2^add(add(i[2]*j[2]*
          igcd(i[1], j[1]), j=t), i=s) /mul(i[1]^i[2]*i[2]!, i=s)
          /mul(i[1]^i[2]*i[2]!, i=t), t=b(n+k$2)), s=b(n$2))
        end:
    A:= (m, n)-> g(min(m, n), abs(m-n)):
    seq(seq(A(m, 1+d-m), m=1..d), d=1..12); # Alois P. Heinz, Aug 13 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i < 1, {}, Union[Flatten[Table[ Function[{p}, p + j*x^i] /@ b[n - i*j, i - 1], {j, 0, n/i}]]]]];
    g[n_, k_] := g[n, k] = Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]* Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/ Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n + k, n + k]}], {s, b[n, n]}];
    A[n_, k_] := g[Min[n, k], Abs[n - k]];
    Table[A[n - k + 1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 09 2019, after Alois P. Heinz in A028657 *)

A353585 Square array T(n,k): row n lists the number of inequivalent matrices over Z/nZ, modulo permutations of rows and columns, of size r X c, 1 <= r <= c, c >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 7, 6, 4, 1, 4, 27, 10, 5, 1, 13, 10, 76, 15, 6, 1, 36, 92, 20, 175, 21, 7, 1, 5, 738, 430, 35, 351, 28, 8, 1, 22, 15, 8240, 1505, 56, 637, 36, 9, 1, 87, 267, 35, 57675, 4291, 84, 1072, 45, 10, 1, 317, 5053, 1996, 70, 289716, 10528, 120, 1701, 55, 11
Offset: 1

Views

Author

M. F. Hasler, Apr 28 2022

Keywords

Comments

The array is read by falling antidiagonals.
Each row lists the number of inequivalent matrices of size 1 X 1, then 2 X 1, 2 X 2, then 3 X 1, 3 X 2, 3 X 3, etc., with coefficients in Z/nZ (or equivalently, in {1, ..., n}). See Examples for more.
Row 1 counts the zero matrices, there is only one of any size. Row 2 counts binary matrices, this is the lower triangular part of A028657, without the trivial row & column 0. (This table might have been extended with a trivial column 0 = A000012 (counting the 1 matrix of size 0) and row 0 = A000007 counting the number of r X c matrices with no entry, as done in A246106.)
The square matrices (size 1 X 1, 2 X 2, 3 X 3, ...) are counted in columns with triangular numbers, k = T(r) = r(r+1)/2 = (1, 3, 6, 10, 15, ...) = A000217.

Examples

			The table starts
   n \ k=1,  2,   3,   4,   5,   6, ...: T(n,k)
  ----+--------------------------------------
   1  |  1   1    1    1    1     1 ...
   2  |  2   3    7    4   13    36 ...
   3  |  3   6   27   10   92   738 ...
   4  |  4  10   76   20  430  8240 ...
   5  |  5  15  175   35 1505 57675 ...
  ...
Columns 2, 3 and 4, 5, 6 correspond to matrices of size 1 X 2, 2 X 2 and 1 X 3, 2 X 3, 3 X 3, respectively.
Column 4 says that there are (1, 4, 10, 20, 35, ...) inequivalent matrices of size 1 X 3 with entries in Z/nZ (n = 1, 2, 3, 4, ...); these numbers are given by (n+2 choose 3) = binomial(n+2, 3) = n(n+1)(n+2)/6 = A000292(n).
		

Crossrefs

All of the following related sequences can be expressed in terms of T(n, k, r) := T(n, k(k-1)/2 + r), WLOG r <= k:
A028657(n,k) = A353585(2,n,k): inequivalent m X n binary matrices,
A002723(n) = T(2,n,2): size n X 2, A002724(n) = T(2,n,n): size n X n,
A002727(n) = T(2,n,3): size n X 3, A002725(n) = T(2,n,n+1): size n X (n+1),
A006148(n) = T(2,n,4): size n X 4, A002728(n) = T(2,n,n+2): size n X (n+2),
A052264(n) = T(2,n,5): size n X 5,
A052269(n) = T(3,n,n): number of inequivalent ternary matrices of size n X n,
A052271(n) = T(4,n,n): number of inequivalent matrices over Z/4Z of size n X n,
A052272(n) = T(5,n,n): number of inequivalent matrices over Z/5Z of size n X n,
A246106(n,k) = A353585(k,n,n): number of inequivalent n X n matrices over Z/kZ, and its diagonal A091058 and columns 1, 2, ..., 10: A000012, A091059, A091060, A091061, A091062, A246122, A246123, A246124, A246125, A246126.

Programs

  • PARI
    A353585(n,k,r)={if(!r,r=sqrtint(8*k)\/2; k-=r*(r-1)\2); my(m(c, p=1, L=0)=for(i=1,#c, if(i==#c || c[i+1]!=c[i], p *= c[i]^(i-L)*(i-L)!; L=i )); p, S=0); forpart(P=k, my(T=0); forpart(Q=r, T += n^sum(i=1,#P, sum(j=1,#Q, gcd(P[i],Q[j]) ))/m(Q)); S += T/m(P)); S}

Formula

Let k = c(c-1)/2 + r, 1 <= r <= c, then
T(n, c, r) := T(n, k) = Sum_{p in P(c), q in P(r)} n^S(p, q)/(N(p)*N(q)), where P(r) are the partitions of r, S(p, q) = Sum_{i in p, j in q} gcd(i, j), N(p) = Product_{distinct parts x in p} x^m(x)*m(x)!, m(x) = multiplicity of x in p.
(See, e.g., A080577 for a list of partitions of positive integers.)
In particular:
T(n, 1) = n, T(n, 2) = n(n+1)/2 = A000217(n), T(n, 4) = C(n+2, 3) = A000292(n), T(n, 7) = C(n+3, 4) = A000332(n+3), etc.: T(n, k(k+1)/2 + 1) = C(n+k, k+1),
T(n, k(k+1)/2) = A246106(k, n).

A363846 Number of connected bipartite graphs on 2n nodes with a marked bipartite set of size n.

Original entry on oeis.org

1, 1, 2, 13, 150, 3529, 194203, 29350896, 13668966399, 20662731749804, 103588456044907944, 1744955436868541083098, 99859125842603176324368784, 19611138475504485904873456937288, 13340730475029359536419515017040194246, 31706419735128559894860278029259121951682970, 265351742295121848168241791689670791068746978140331
Offset: 0

Views

Author

Max Alekseyev, Jun 24 2023

Keywords

Comments

Also, number of n X n binary matrices up to permutations of rows and columns, representing the reduced adjacency matrices of connected bipartite graphs (cf. A002724).

Crossrefs

Diagonal of the rectangular array described in A363845.

Formula

a(n) = A363845(2n, n).
Previous Showing 21-30 of 37 results. Next