cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A002728 Number of n X (n+2) binary matrices.

Original entry on oeis.org

1, 4, 22, 190, 3250, 136758, 17256831, 7216495370, 10271202313659, 49856692830176512, 826297617412284162618, 46948445432190686211183650, 9200267975562856184153936960940, 6261904454889790650636380541051266410, 14910331834338546882501064075429145637985605
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of the array A(m,n) described in A028657. - N. J. A. Sloane, Sep 01 2013

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, {0}, `if`(i<1, {},
          {seq(map(p-> p+j*x^i, b(n-i*j, i-1) )[], j=0..n/i)}))
        end:
    a:= n-> add(add(2^add(add(igcd(i, j)* coeff(s, x, i)*
          coeff(t, x, j), j=1..degree(t)), i=1..degree(s))/
          mul(i^coeff(s, x, i)*coeff(s, x, i)!, i=1..degree(s))/
          mul(i^coeff(t, x, i)*coeff(t, x, i)!, i=1..degree(t)),
          t=b(n+2$2)), s=b(n$2)):
    seq(a(n), n=0..12);  # Alois P. Heinz, Aug 01 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {0}, If[i<1, {}, Table[Function[{p}, p + j*x^i]@ b[n-i*j, i-1] , {j, 0, n/i}]]] // Flatten; a[n_] := Sum[Sum[2^Sum[Sum[GCD[i, j]*Coefficient[s, x, i]*Coefficient[t, x, j], {j, 1, Exponent[t, x]}], {i, 1, Exponent[s, x]}]/Product[i^Coefficient[s, x, i]*Coefficient[s, x, i]!, {i, 1, Exponent[s, x]}]/Product[i^Coefficient[t, x, i]*Coefficient[t, x, i]!, {i, 1, Exponent[t, x]}], {t, b[n+2, n+2]}], {s, b[n, n]}]; Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Nov 28 2014, after Alois P. Heinz *)
  • PARI
    a(n) = A(n+2,n) \\ A defined in A028657. - Andrew Howroyd, Mar 01 2023

Formula

a(n) = sum {1*s_1+2*s_2+...=n, 1*t_1+2*t_2+...=n+2} (fix A[s_1, s_2, ...;t_1, t_2, ...]/(1^s_1*s_1!*2^s_2*s_2!*...*1^t_1*t_1!*2^t_2*t_2!*...)) where fix A[...] = 2^sum {i, j>=1} (gcd(i, j)*s_i*t_j). - Sean A. Irvine, Jul 31 2014

Extensions

More terms from Vladeta Jovovic, Feb 04 2000

A005745 Number of n-covers of an unlabeled 3-set.

Original entry on oeis.org

1, 6, 23, 65, 156, 336, 664, 1229, 2159, 3629, 5877, 9221, 14070, 20951, 30530, 43634, 61283, 84725, 115461, 155294, 206368, 271210, 352784, 454550, 580509, 735280, 924163, 1153207, 1429292, 1760218, 2154776, 2622859, 3175555, 3825247
Offset: 1

Views

Author

Keywords

Comments

Number of n X 3 binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A055080.
First differences give A055609.

Programs

Formula

a(n) = A002727(n) - A002623(n).
G.f.: -x*(x^8-x^7-x^6-2*x^5+2*x^4+x^3-3*x^2-2*x-1)/((x^3-1)^2*(x^2-1)^2*(x-1)^4).

Extensions

More terms from Vladeta Jovovic, May 26 2000

A005746 Number of n-covers of an unlabeled 4-set.

Original entry on oeis.org

1, 9, 51, 230, 863, 2864, 8609, 23883, 61883, 151214, 350929, 778113, 1656265, 3398229, 6743791, 12983181, 24311044, 44377016, 79124476, 138048542, 236050912, 396137492, 653285736, 1059923072, 1693592112, 2667563553, 4145373780, 6360553548, 9643151582
Offset: 1

Views

Author

Keywords

Comments

Number of n X 4 binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A055080.
First differences give A055082.

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (1 + 3 x + 9 x^2 + 26 x^3 + 35 x^4 + 92 x^5 + 127 x^6 + 201 x^7 + 242 x^8 + 253 x^9 + 248 x^10 + 205 x^11 + 123 x^12 + 86 x^13 + 31 x^14 + 24 x^15 + 19 x^16 + 5 x^17 + 3 x^18 -
    2 x^19 - 4 x^20 + 2 x^21 - 4 x^22 + 3 x^23 - x^25 + 2 x^26 - x^27)/((1 - x)^16 (1 + x)^6 (1 + x^2)^3 (1 + x + x^2)^4), {x, 0, 29}], x] (* Michael De Vlieger, Aug 23 2016 *)
  • PARI
    Vec(x*(1 +3*x +9*x^2 +26*x^3 +35*x^4 +92*x^5 +127*x^6 +201*x^7 +242*x^8 +253*x^9 +248*x^10 +205*x^11 +123*x^12 +86*x^13 +31*x^14 +24*x^15 +19*x^16 +5*x^17 +3*x^18 -2*x^19 -4*x^20 +2*x^21 -4*x^22 +3*x^23 -x^25 +2*x^26 -x^27) / ((1 -x)^16*(1 +x)^6*(1 +x^2)^3*(1 +x +x^2)^4) + O(x^40)) \\ Colin Barker, Aug 23 2016
    
  • PARI
    Vec(G(4, x) - G(3, x) + O(x^40)) \\ G defined in A028657. - Andrew Howroyd, Feb 28 2023

Formula

a(n) = A006148(n) - A002727(n).
G.f.: x*(1 +3*x +9*x^2 +26*x^3 +35*x^4 +92*x^5 +127*x^6 +201*x^7 +242*x^8 +253*x^9 +248*x^10 +205*x^11 +123*x^12 +86*x^13 +31*x^14 +24*x^15 +19*x^16 +5*x^17 +3*x^18 -2*x^19 -4*x^20 +2*x^21 -4*x^22 +3*x^23 -x^25 +2*x^26 -x^27) / ((1 -x)^16*(1 +x)^6*(1 +x^2)^3*(1 +x +x^2)^4). - Corrected by Colin Barker, Aug 23 2016

Extensions

More terms and g.f. from Vladeta Jovovic, May 26 2000
a(19) onwards corrected by Sean A. Irvine, Aug 22 2016

A353585 Square array T(n,k): row n lists the number of inequivalent matrices over Z/nZ, modulo permutations of rows and columns, of size r X c, 1 <= r <= c, c >= 1.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 7, 6, 4, 1, 4, 27, 10, 5, 1, 13, 10, 76, 15, 6, 1, 36, 92, 20, 175, 21, 7, 1, 5, 738, 430, 35, 351, 28, 8, 1, 22, 15, 8240, 1505, 56, 637, 36, 9, 1, 87, 267, 35, 57675, 4291, 84, 1072, 45, 10, 1, 317, 5053, 1996, 70, 289716, 10528, 120, 1701, 55, 11
Offset: 1

Views

Author

M. F. Hasler, Apr 28 2022

Keywords

Comments

The array is read by falling antidiagonals.
Each row lists the number of inequivalent matrices of size 1 X 1, then 2 X 1, 2 X 2, then 3 X 1, 3 X 2, 3 X 3, etc., with coefficients in Z/nZ (or equivalently, in {1, ..., n}). See Examples for more.
Row 1 counts the zero matrices, there is only one of any size. Row 2 counts binary matrices, this is the lower triangular part of A028657, without the trivial row & column 0. (This table might have been extended with a trivial column 0 = A000012 (counting the 1 matrix of size 0) and row 0 = A000007 counting the number of r X c matrices with no entry, as done in A246106.)
The square matrices (size 1 X 1, 2 X 2, 3 X 3, ...) are counted in columns with triangular numbers, k = T(r) = r(r+1)/2 = (1, 3, 6, 10, 15, ...) = A000217.

Examples

			The table starts
   n \ k=1,  2,   3,   4,   5,   6, ...: T(n,k)
  ----+--------------------------------------
   1  |  1   1    1    1    1     1 ...
   2  |  2   3    7    4   13    36 ...
   3  |  3   6   27   10   92   738 ...
   4  |  4  10   76   20  430  8240 ...
   5  |  5  15  175   35 1505 57675 ...
  ...
Columns 2, 3 and 4, 5, 6 correspond to matrices of size 1 X 2, 2 X 2 and 1 X 3, 2 X 3, 3 X 3, respectively.
Column 4 says that there are (1, 4, 10, 20, 35, ...) inequivalent matrices of size 1 X 3 with entries in Z/nZ (n = 1, 2, 3, 4, ...); these numbers are given by (n+2 choose 3) = binomial(n+2, 3) = n(n+1)(n+2)/6 = A000292(n).
		

Crossrefs

All of the following related sequences can be expressed in terms of T(n, k, r) := T(n, k(k-1)/2 + r), WLOG r <= k:
A028657(n,k) = A353585(2,n,k): inequivalent m X n binary matrices,
A002723(n) = T(2,n,2): size n X 2, A002724(n) = T(2,n,n): size n X n,
A002727(n) = T(2,n,3): size n X 3, A002725(n) = T(2,n,n+1): size n X (n+1),
A006148(n) = T(2,n,4): size n X 4, A002728(n) = T(2,n,n+2): size n X (n+2),
A052264(n) = T(2,n,5): size n X 5,
A052269(n) = T(3,n,n): number of inequivalent ternary matrices of size n X n,
A052271(n) = T(4,n,n): number of inequivalent matrices over Z/4Z of size n X n,
A052272(n) = T(5,n,n): number of inequivalent matrices over Z/5Z of size n X n,
A246106(n,k) = A353585(k,n,n): number of inequivalent n X n matrices over Z/kZ, and its diagonal A091058 and columns 1, 2, ..., 10: A000012, A091059, A091060, A091061, A091062, A246122, A246123, A246124, A246125, A246126.

Programs

  • PARI
    A353585(n,k,r)={if(!r,r=sqrtint(8*k)\/2; k-=r*(r-1)\2); my(m(c, p=1, L=0)=for(i=1,#c, if(i==#c || c[i+1]!=c[i], p *= c[i]^(i-L)*(i-L)!; L=i )); p, S=0); forpart(P=k, my(T=0); forpart(Q=r, T += n^sum(i=1,#P, sum(j=1,#Q, gcd(P[i],Q[j]) ))/m(Q)); S += T/m(P)); S}

Formula

Let k = c(c-1)/2 + r, 1 <= r <= c, then
T(n, c, r) := T(n, k) = Sum_{p in P(c), q in P(r)} n^S(p, q)/(N(p)*N(q)), where P(r) are the partitions of r, S(p, q) = Sum_{i in p, j in q} gcd(i, j), N(p) = Product_{distinct parts x in p} x^m(x)*m(x)!, m(x) = multiplicity of x in p.
(See, e.g., A080577 for a list of partitions of positive integers.)
In particular:
T(n, 1) = n, T(n, 2) = n(n+1)/2 = A000217(n), T(n, 4) = C(n+2, 3) = A000292(n), T(n, 7) = C(n+3, 4) = A000332(n+3), etc.: T(n, k(k+1)/2 + 1) = C(n+k, k+1),
T(n, k(k+1)/2) = A246106(k, n).

A052267 Number of 2 X n matrices over GF(3) under row and column permutations.

Original entry on oeis.org

1, 6, 27, 92, 267, 678, 1561, 3312, 6582, 12372, 22194, 38232, 63594, 102564, 160974, 246576, 369567, 543114, 784069, 1113684, 1558557, 2151578, 2933151, 3952416, 5268796, 6953544, 9091668, 11783856, 15148836, 19325736, 24476940, 30790944, 38485773, 47812398
Offset: 0

Views

Author

Vladeta Jovovic, Feb 04 2000

Keywords

Crossrefs

Programs

  • PARI
    Vec((3*x^2+1) / ((1-x^2)^3*(1-x)^6) + O(x^40)) \\ Colin Barker, Jan 16 2017

Formula

G.f.: (3*x^2+1) /((1-x^2)^3*(1-x)^6).
a(n) = ((315*(475+37*(-1)^n) + 6*(54959+945*(-1)^n)*n + (298618+630*(-1)^n)*n^2 + 150528*n^3 + 46788*n^4 + 9156*n^5 + 1092*n^6 + 72*n^7 + 2*n^8)) / 161280. - Colin Barker, Jan 16 2017

A055484 Number of unlabeled 3-element intersecting families (with not necessarily distinct sets) of an n-element set.

Original entry on oeis.org

1, 4, 14, 39, 96, 213, 437, 837, 1520, 2632, 4380, 7040, 10979, 16668, 24716, 35879, 51104, 71549, 98625, 134025, 179782, 238292, 312386, 405368, 521083, 663968, 839140, 1052439, 1310534, 1620985, 1992343, 2434229, 2957458, 3574108
Offset: 1

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 03 2000

Keywords

Crossrefs

Cf. A053155 (labeled case), A005783, A002727, A051180.

Programs

  • Mathematica
    Rest[CoefficientList[Series[-x*(x^3 - x^2 - 1)*(x^6 + x^4 + 2*x^3 + x^2 + 1)/((x^3 - 1)^2*(x^2 - 1)^2*(x - 1)^4), {x, 0, 50}], x]] (* G. C. Greubel, Oct 06 2017 *)
    LinearRecurrence[{4,-4,-2,2,4,3,-12,3,4,2,-2,-4,4,-1},{1,4,14,39,96,213,437,837,1520,2632,4380,7040,10979,16668},40] (* Harvey P. Dale, Jun 10 2024 *)
  • PARI
    x='x+O('x^50); Vec(-x*(x^3-x^2-1)*(x^6+x^4+2*x^3+x^2+1)/( (x^3-1)^2*(x^2-1)^2*(x-1)^4)) \\ G. C. Greubel, Oct 06 2017

Formula

G.f.: -x*(x^3-x^2-1)*(x^6+x^4+2*x^3+x^2+1)/((x^3-1)^2*(x^2-1)^2*(x-1)^4).

Extensions

More terms from James Sellers, Jul 04 2000

A056204 Number of n X 5 binary matrices under row and column permutations and column complementations.

Original entry on oeis.org

1, 1, 6, 16, 81, 299, 1358, 5567, 23350, 91998, 351058, 1269907, 4394634, 14495236, 45779246, 138567568, 403282017, 1130773069, 3062535192, 8028046724, 20411824364, 50429813556, 121280243676, 284360432241, 650972702410
Offset: 0

Views

Author

Vladeta Jovovic, Aug 05 2000

Keywords

References

  • M. A. Harrison, On the number of classes of binary matrices, IEEE Trans. Computers, 22 (1973), 1048-1051.

Crossrefs

Formula

G.f.: 1/3840*(1/(1 - x^1)^32 + 231/(1 - x^2)^16 + 20/(1 - x^1)^16/(1 - x^2)^8 + 520/(1 - x^4)^8 + 60/(1 - x^1)^8/(1 - x^2)^12 + 80/(1 - x^1)^8/(1 - x^3)^8 + 720/(1 - x^2)^4/(1 - x^6)^4 + 160/(1 - x^1)^4/(1 - x^2)^2/(1 - x^3)^4/(1 - x^6)^2 + 320/(1 - x^4)^2/(1 - x^12)^2 + 240/(1 - x^1)^4/(1 - x^2)^2/(1 - x^4)^6 + 480/(1 - x^8)^4 + 240/(1 - x^2)^4/(1 - x^4)^6 + 384/(1 - x^1)^2/(1 - x^5)^6 + 384/(1 - x^2)^1/(1 - x^10)^3).

A056205 Number of n X 6 binary matrices under row and column permutations and column complementations.

Original entry on oeis.org

1, 1, 7, 23, 153, 849, 6128, 43534, 319119, 2255466, 15307395, 98349144, 597543497, 3430839916, 18653684881, 96273409815, 473010823993, 2218614773950, 9961651259869, 42927432229913, 177963663264430
Offset: 0

Views

Author

Vladeta Jovovic, Aug 05 2000

Keywords

References

  • M. A. Harrison, On the number of classes of binary matrices, IEEE Trans.Computers, 22 (1973), 1048-1051.

Crossrefs

Formula

G.f.: 1/46080*(1/(1 - x^1)^64 + 1053/(1 - x^2)^32 + 30/(1 - x^1)^32/(1 - x^2)^16 + 4920/(1 - x^4)^16 + 180/(1 - x^1)^16/(1 - x^2)^24 + 120/(1 - x^1)^8/(1 - x^2)^28 + 160/(1 - x^1)^16/(1 - x^3)^16 + 5280/(1 - x^2)^8/(1 - x^6)^8 + 960/(1 - x^1)^8/(1 - x^2)^4/(1 - x^3)^8/(1 - x^6)^4 + 3840/(1 - x^4)^4/(1 - x^12)^4 + 640/(1 - x^1)^4/(1 - x^3)^20 + 1920/(1 - x^2)^2/(1 - x^6)^10 + 720/(1 - x^1)^8/(1 - x^2)^4/(1 - x^4)^12 + 5760/(1 - x^8)^8 + 2160/(1 - x^2)^8/(1 - x^4)^12 + 1440/(1 - x^1)^4/(1 - x^2)^6/(1 - x^4)^12 + 2304/(1 - x^1)^4/(1 - x^5)^12 + 6912/(1 - x^2)^2/(1 - x^10)^6 + 3840/(1 - x^1)^2/(1 - x^2)^1/(1 - x^3)^2/(1 - x^6)^9 + 3840/(1 - x^4)^1/(1 - x^12)^5).

A055194 Number of 3 X n binary matrices with distinct rows, up to row and column permutation; (n,3)-hypergraphs (including empty hyperedge but excluding multiple hyperedges).

Original entry on oeis.org

3, 16, 52, 134, 302, 614, 1159, 2064, 3504, 5716, 9018, 13818, 20643, 30158, 43190, 60758, 84110, 114746, 154469, 205422, 270132, 351562, 453172, 578962, 733551, 922238, 1151072, 1426932, 1757618, 2151920, 2619731, 3172138, 3821524, 4581682, 5467942, 6497272, 7688431
Offset: 2

Views

Author

Vladeta Jovovic, Jun 30 2000

Keywords

Crossrefs

Cf. A002727.

Formula

G.f.: -x^2*(x^8-2*x^6-2*x^5+4*x^3-4*x-3)/((x^3-1)^2*(x^2-1)^2*(x-1)^4).
a(n) ~ n^7/30240. - Stefano Spezia, Nov 22 2023

Extensions

More terms from James Sellers, Jul 04 2000
a(35)-a(38) from Stefano Spezia, Nov 22 2023

A058053 Number of 3-rowed binary matrices with n ones and no zero columns, up to row and column permutation.

Original entry on oeis.org

1, 1, 3, 6, 11, 18, 33, 49, 78, 117, 171, 242, 346, 469, 640, 855, 1127, 1463, 1896, 2405, 3045, 3813, 4736, 5831, 7156, 8684, 10507, 12627, 15092, 17935, 21249, 25004, 29341, 34272, 39875, 46207, 53407, 61446, 70528, 80682, 92026, 104650, 118752
Offset: 0

Views

Author

Vladeta Jovovic, Nov 19 2000

Keywords

Comments

Number of 3 x n binary matrices with n ones up to row and column permutation.

Crossrefs

Formula

a(n)= coefficient of x^n*y^n in expansion of 1 / 3!*(1 / (1 - x) / (1 - x*y)^3 / (1 - x*y^2)^3 / (1 - x*y^3) + 3 / (1 - x) / (1 - x*y) / (1 - x*y^2) / (1 - x*y^3) / (1 - x^2*y^2) / (1 - x^2*y^4) + 2 / (1 - x) / (1 - x*y^3) / (1 - x^3*y^3) / (1 - x^3*y^6)).
Empirical g.f.: -(x^8-x^7+x^6+x^4+x^2-x+1) / ((x-1)^7*(x+1)^3*(x^2-x+1)*(x^2+1)*(x^2+x+1)^3). - Colin Barker, Jul 11 2013

Extensions

a(21)-a(42) from Max Alekseyev, Jan 21 2010
Previous Showing 11-20 of 23 results. Next