cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-29 of 29 results.

A065622 Numerator of 1 - (3/4)^n - frac((3/2)^n), where frac(x) = x - floor(x).

Original entry on oeis.org

0, -1, 3, 13, 159, 173, 1767, 12789, 17759, 126237, 292183, 1930245, 3724303, 23940141, 14206087, 99585429, 640559295, 12562430525, 7042526903, 43417422885, 813747135599, 494896655693, 3000760993767, 18098709141429, 249612172740383
Offset: 0

Views

Author

Henry Bottomley, Dec 03 2001

Keywords

Comments

The presumption that the fraction is positive for n > 1 underlies the presumed solution to Waring's problem.

Examples

			a(3) = 13 since 1 - (3/4)^3 - frac((3/2)^3) = 1 - 27/64 - frac(27/8) = 1 - 27/64 - 3/8 = (64 - 27 - 24)/64 = 13/64.
		

Crossrefs

Denominator is A000302. Cf. A002804.

Programs

  • Mathematica
    Table[1 - (3/4)^n - FractionalPart[(3/2)^n], {n, 0, 24}] // Numerator (* Jean-François Alcover, Apr 26 2016 *)
  • PARI
    { for (n=0, 200, a=numerator(1 - (3/4)^n - frac((3/2)^n)); write("b065622.txt", n, " ", a) ) } \\ Harry J. Smith, Oct 24 2009

Formula

a(n) = 4^n*(1 + floor((3/2)^n)) - 3^n - 6^n = A005061(n) - A002380(n)*A000079(n) = A000302(n)*(1 + A002379(n)) - A000244(n) - A000400(n).

A252487 Smallest k such that n^7 = a_1^7 + ... + a_k^7 and all a_i are positive integers less than n.

Original entry on oeis.org

128, 28, 66, 39, 28, 26, 21, 20, 18, 22, 22, 22, 20, 21, 14, 17, 14, 14, 17, 16, 17, 14, 16, 13, 15, 13, 12, 15, 13, 15, 13, 14, 13, 14, 13, 13, 14, 12, 12, 12, 13, 12, 12, 12, 11, 13, 13, 12, 12, 13, 12, 12, 11, 12, 11, 11, 12, 12, 11, 12, 9, 12, 11, 11, 11
Offset: 2

Views

Author

M. F. Hasler, Dec 17 2014

Keywords

Comments

Inspired by Fermat's Last Theorem: 2 never occurs in this sequence.
No n is known for which a(n)<7, according to the MathWorld page. The values 7, 8, 9, ... occur first at indices 568, 102, 62, ...
I conjecture that the sequence is bounded by the initial term a(2)=128. Probably even a(4)=66, a(5)=39, a(6)=28 and some more are followed only by smaller terms.
I've uploaded two scripts; one to compute the b-file and one to generate an IP file. For the first script, a parameter kmax can be set to gain a speedup but more memory is used. The other one (which also works with large integers now) should be used in case someone has a good IP-solver. Higher terms might be computable faster with a good IP solver. - Manfred Scheucher, Aug 14 2015
From results on Waring's problem, it is known that all a(n) <= A002804(7) = 143, and a(n) <= 33 for all sufficiently large n. - Robert Israel, Aug 16 2015

Crossrefs

Programs

  • Maple
    M:= 10^8:
    R:= Vector(M,144, datatype=integer[4]):
    for p from 1 to floor(M^(1/7)) do
      p7:= p^7;
      if p > 1 then A[p]:= R[p7] fi;
      R[p7]:= 1;
      for j from p7+1 to M do
        R[j]:= min(R[j],1+R[j - p7]);
      od
    od:
    F:= proc(n,k,ub)
       local lb, m, bestyet, res;
       if ub <= 0 then return -1 fi;
       if n <= M then
         if n = 0 then return 0
         elif R[n] > ub then return -1
         else return R[n]
         fi
       fi;
       lb:= floor(n/k^7);
       if lb > ub then return -1 fi;
       bestyet:= ub;
       for m from lb to 0 by -1 do
         res:= procname(n-m*k^7, k-1, bestyet-m);
         if res >= 0 then
           bestyet:= res+m;
         fi
       od:
       return bestyet
    end proc:
    for n from floor(M^(1/7))+1 to 50 do
       A[n]:= F(n^7,n-1,144)
    od:
    seq(A[n],n=2..50); # Robert Israel, Aug 17 2015
  • PARI
    a(n,verbose=0,m=7)={N=n^m;for(k=3,999,forvec(v=vector(k-1,i,[1,n\sqrtn(k+1-i,m)]),ispower(N-sum(i=1,k-1,v[i]^m),m,&K)&&K>0&&!(verbose&&print1("/*"n" "v"*/"))&&return(k),1))}

Extensions

More terms from Manfred Scheucher, Aug 15 2015
a(50)-a(66) from Giovanni Resta, Aug 17 2015

A259942 Numbers that are larger than or equal to the sum of the cubes of their prime factors (with multiplicity).

Original entry on oeis.org

1, 64, 96, 108, 128, 144, 162, 192, 216, 240, 243, 256, 270, 288, 300, 320, 324, 360, 384, 400, 405, 432, 448, 450, 480, 486, 500, 504, 512, 540, 560, 567, 576, 600, 625, 630, 640, 648, 672, 675, 700, 720, 729, 750, 756, 768, 784, 800, 810, 840, 864, 875, 882, 896, 900, 945, 960, 972, 980, 1000
Offset: 1

Views

Author

Francesco Di Matteo, Nov 08 2015

Keywords

Comments

This sequence is analogous to A166319 but with cubes instead of squares.

Examples

			64 = 2*2*2*2*2*2 >= 6 * 2^3, so 64 is in the sequence.
96 = 3*2*2*2*2*2 >= 3^3 + 5 * 2^3, so 96 is in the sequence.
256 = 4*4*4*4 >= 4*4^3, so 256 is in the sequence.
		

Crossrefs

Programs

  • Maple
    isA259942 := proc(n)
        local ifa;
        ifa := ifactors(n)[2] ;
        return (n >= add( op(2,p)*op(1,p)^3,p=ifa)) ;
    end proc:
    for n from 0 to 1000 do
        if isA259942(n) then
            printf("%d,",n);
        end if;
    end do: # R. J. Mathar, Nov 27 2015
  • Mathematica
    scpfQ[n_]:=n>=Total[Flatten[Table[#[[1]],{#[[2]]}]&/@ FactorInteger[ n]]^3]; Select[Range[1000],scpfQ] (* Harvey P. Dale, Dec 25 2015 *)
  • PARI
    isok(n) = {my(f = factor(n)); n >= sum(k=1, #f~, f[k,2]*f[k,1]^3);} \\ Michel Marcus, Nov 28 2015
  • Python
    from sympy import factorint
    for j in range(1, 1001):
        k =  factorint(j)
        it = list(k.keys())
        va = list(k.values())
        alfa = 0
        for l in range(0,len(k)):
            alfa = alfa + va[l]*(it[l]**3)
        if alfa <=j:
            print(j)
    

A284641 Expansion of (Sum_{k>=0} x^(k^2*(k+1)^2/4))^12.

Original entry on oeis.org

1, 12, 66, 220, 495, 792, 924, 792, 495, 232, 198, 672, 1981, 3960, 5544, 5544, 3960, 1980, 726, 792, 2982, 7920, 13860, 16632, 13860, 7920, 2970, 880, 2046, 7920, 18480, 27720, 27720, 18480, 7920, 1980, 727, 4092, 14520, 29700, 38610, 33264, 19404, 7920, 2475, 1584, 6996, 22584, 43560, 55440, 49896
Offset: 0

Views

Author

Ilya Gutkovskiy, May 06 2017

Keywords

Comments

Number of ways to write n as an ordered sum of 12 squares of triangular numbers (A000537).
Every number is the sum of three triangular numbers (Fermat's polygonal number theorem).
Conjecture: a(n) > 0 for all n.
Extended conjecture: every number is the sum of at most 12 squares of triangular numbers (or partial sums of cubes).
Is there a solution, in analogy with Waring's problem (see A002804), for the partial sums of k-th powers?

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Sum[x^(k^2 (k + 1)^2/4), {k, 0, nmax}]^12, {x, 0, nmax}], x]

Formula

G.f.: (Sum_{k>=0} x^(k^2*(k+1)^2/4))^12.

A098821 a(n) = (n-2) * 2^(n-1) + 5.

Original entry on oeis.org

4, 4, 5, 9, 21, 53, 133, 325, 773, 1797, 4101, 9221, 20485, 45061, 98309, 212997, 458757, 983045, 2097157, 4456453, 9437189, 19922949, 41943045, 88080389, 184549381, 385875973, 805306373, 1677721605, 3489660933, 7247757317
Offset: 0

Views

Author

Parthasarathy Nambi, Oct 08 2004

Keywords

Examples

			a(5) = 3*2^4 + 5 = 53.
		

References

  • G. H. Hardy and J. E. Littlewood, "Some problems of partitio numerorum (VI): Further researches in Waring's Problem", Math. Z. vol. 23, 1-37, (1925)
  • T. D. Wooley, "Large improvements in Waring's Problem", Ann. Math. vol. 135, 131-164 (1992)

Crossrefs

Programs

Formula

From Colin Barker, Jan 28 2012: (Start)
G.f.: (4-16*x+17*x^2)/(1-5*x+8*x^2-4*x^3).
a(n)=5*a(n-1)-8*a(n-2)+4*a(n-3). (End)

Extensions

More terms from Stefan Steinerberger, Mar 06 2006

A098823 a(n) = 16*(8*prime(n) + 7).

Original entry on oeis.org

368, 496, 752, 1008, 1520, 1776, 2288, 2544, 3056, 3824, 4080, 4848, 5360, 5616, 6128, 6896, 7664, 7920, 8688, 9200, 9456, 10224, 10736, 11504, 12528, 13040, 13296, 13808, 14064, 14576, 16368, 16880, 17648, 17904, 19184, 19440, 20208, 20976
Offset: 1

Views

Author

Parthasarathy Nambi, Oct 08 2004

Keywords

Examples

			4^2 * (8*2 + 7) = 368 when p=2.
		

Crossrefs

Programs

  • Mathematica
    Table[16*(8*Prime[n] + 7), {n, 1, 40}] (* Stefan Steinerberger, Mar 06 2006 *)
  • PARI
    main(m)=forprime(p=2,m,print1(16 * (8 * p + 7),", ")) \\ Anders Hellström, Aug 26 2015

Extensions

More terms from Stefan Steinerberger, Mar 06 2006

A206375 Vinogradov's constants arising in enumeration of solutions to Waring's problem in the evil numbers (A001969).

Original entry on oeis.org

8, 16, 32, 64, 128, 256, 512, 1024, 1758, 2128, 2536, 2982, 3466, 3988, 4550, 5152, 5792, 6474, 7194, 7956, 8758, 9600, 10484, 11408, 12376, 13384, 14432, 15524, 16658, 17834, 19052, 20314, 21618, 22964, 24354, 25786, 27262, 28780
Offset: 3

Views

Author

Jonathan Vos Post, Feb 07 2012

Keywords

Comments

From Lemma 2, p. 2, of Eminyan.

Examples

			a(11) = 2*floor( 11^2*(log(11) + log(log(11)) + 4) ) = 2*floor(879.970885...) = 2*879 = 1758.
		

Crossrefs

Formula

For 3 <= n <= 10 then 2^n; else if n > 10 then a(n) = 2*floor( n^2*(log(n) + log(log(n)) + 4) ).

A240720 Successive record-setters in Waring's problem Diophantine inequality.

Original entry on oeis.org

2, 5, 14, 46, 58, 105, 157, 163, 455, 1060, 1256, 2677, 8093, 28277, 33327, 49304
Offset: 1

Views

Author

Jean-François Alcover, Apr 11 2014

Keywords

Crossrefs

Cf. A002804.

Programs

  • Mathematica
    Reap[For[record = 1; n = 2, n < 10^9, n++, r = 1 - (3/4)^n - FractionalPart[(3/2)^n]; If[r < record, record = r; Print[{n, record // N}]; Sow[n]]]][[2, 1]]

A356037 Conjecturally, a(n) is the smallest number m such that every natural number is a sum of at most m n-simplex numbers.

Original entry on oeis.org

1, 3, 5, 8, 10, 13, 15, 15, 19, 24
Offset: 1

Views

Author

Mohammed Yaseen, Jul 24 2022

Keywords

Comments

n-simplex numbers are {binomial(k,n); k>=n}.
This problem is the simplex number analog of Waring's problem.
a(2) = 3 was proposed by Fermat and proved by Gauss, see A061336.
Pollock conjectures that a(3) = 5. Salzer and Levine prove this for numbers up to 452479659. See A104246 and A000797.
Kim gives a(4)=8, a(5)=10, a(6)=13 and a(7)=15 (not proved).

Examples

			2-simplex numbers are {binomial(k,2); k>=2} = {1,3,6,10,...}, the triangular numbers. 3 is the smallest number m such that every natural number is a sum of at most m triangular numbers. So a(2)=3.
3-simplex numbers are {binomial(k,3); k>=3} = {1,4,10,20,...}, the tetrahedral numbers. 5 is presumed to be the smallest number m such that every natural number is a sum of at most m tetrahedral numbers. So a(3)=5.
		

Crossrefs

Minimal number of x-simplex numbers whose sum equals n: A061336 (x=2), A104246 (x=3), A283365 (x=4), A283370 (x=5).
x-simplex numbers: A000217 (x=2), A000292 (x=3), A000332 (x=4), A000389 (x=5), A000579 (x=6), A000580 (x=7), A000581 (x=8), A000582 (x=9).
Previous Showing 21-29 of 29 results.