cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-69 of 69 results.

A321246 Non-isomorphic proper colorings of the 5 X 5 grid graph using at most n colors under rotational and reflectional symmetries.

Original entry on oeis.org

0, 2, 76332, 2557101612, 6352711134515, 2747239197568620, 378972203462839707, 23698347614119889312, 832593421909253876202, 18885862442806789810230, 304064344379602597321190, 3716359333313224494744012, 36226784801918510547852117, 292338319876651811428566992, 2009992643746035728869251645, 12045344786281525649136156960, 64072515057361294676198896292
Offset: 1

Views

Author

Marko Riedel, Nov 01 2018

Keywords

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.

Crossrefs

Formula

a(n) = (1/8)*n^25 - 5*n^24 + (195/2)*n^23-1233*n^22 + (45399/4)*n^21 - 80919*n^20 + (928545/2)*n^19 - (17590911/8)*n^18 + (69997383/8)*n^17 - (118477969/4)*n^16 + (172111059/2)*n^15 - (1726958987/8)*n^14 + (3754019329/8)*n^13 - (1770719251/2)*n^12 + (5797425049/4)*n^11 - 2053661272*n^10 + (20055169857/8)*n^9 - (20932696169/8)*n^8 + (9236896437/4)*n^7 - (6780818949/4)*n^6 + (8083053959/8)*n^5 - (3768579695/8)*n^4 + (1292510453/8)*n^3 - (145271789/4)*n^2 + 4017958*n.

A336502 Partial sums of A057003.

Original entry on oeis.org

1, 7, 127, 5167, 365527, 39435607, 6006997207, 1226103906007, 322796982334807, 106460296033918807, 42980408446129381207, 20846482682939051365207, 11959807608801430284133207, 8010447502346968140207973207, 6193994326661240674349352805207, 5476021766725276671842502543205207
Offset: 1

Views

Author

Seiichi Manyama, Jul 23 2020

Keywords

Comments

Inspired by doubly triangular numbers (A002817).

Examples

			a(2) = 1 + 2*3 = 7.
a(3) = 1 + 2*3 + 4*5*6 = 127.
a(4) = 1 + 2*3 + 4*5*6 + 7*8*9*10 = 5167.
		

Crossrefs

Programs

  • Mathematica
    Accumulate @ Table[(n * (n + 1)/2)!/((n - 1) * n /2)!, {n, 1, 16}] (* Amiram Eldar, Jul 23 2020 *)
  • PARI
    {a(n) = sum(i=1, n, prod(j=(i-1)*i/2+1, i*(i+1)/2, j))}

Formula

a(n) = Sum_{i=1..n} Product_{j=T(i-1)+1..T(i)} j where T(n) is n-th triangular number.
a(n) = A227364(T(n)) where T(n) is n-th triangular number.
a(n) ~ n^(2*n) / 2^n. - Vaclav Kotesovec, Nov 20 2021

A378198 Table T(n, k) read by upward antidiagonals. T(n,1) = A375602(n), T(n,2) = A375602(A375602(n)), T(n,3) = A375602(A375602(A375602(n))) and so on.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 3, 3, 2, 1, 5, 4, 4, 2, 1, 6, 5, 3, 3, 2, 1, 7, 6, 5, 4, 4, 2, 1, 10, 7, 6, 5, 3, 3, 2, 1, 13, 16, 7, 6, 5, 4, 4, 2, 1, 16, 14, 9, 7, 6, 5, 3, 3, 2, 1, 8, 9, 17, 13, 7, 6, 5, 4, 4, 2, 1, 11, 10, 13, 12, 14, 7, 6, 5, 3, 3, 2, 1, 14, 8, 16, 14, 11, 17, 7, 6, 5, 4, 4, 2, 1, 17, 17, 10, 9, 17, 8, 12, 7, 6, 5, 3, 3, 2, 1, 19, 12, 12, 16, 13, 12, 10, 11, 7
Offset: 1

Views

Author

Boris Putievskiy, Nov 19 2024

Keywords

Comments

Sequence A375602 generates an infinite cyclic group under composition. The identity element is A000027.
Each column is triangle read by rows (blocks). Each row is a permutation of a block of consecutive numbers; the blocks are disjoint and every positive number belongs to some block. Row n has length n(n^2 + 1)/2 = A006003(n).
Each column is an intra-block permutation of the positive integers.
For n > 1, each row combines n consecutive antidiagonals.
Generalization of the Cantor numbering method.

Examples

			Table begins:
  k =      1   2   3   4   5   6
--------------------------------------
  n =  1:  1,  1,  1,  1,  1,  1, ...
  n =  2:  2,  2,  2,  2,  2,  2, ...
  n =  3:  4,  3,  4,  3,  4,  3, ...
  n =  4:  3,  4,  3,  4,  3,  4, ...
  n =  5:  5,  5,  5,  5,  5,  5, ...
  n =  6:  6,  6,  6,  6,  6,  6, ...
  n =  7:  7,  7,  7,  7,  7,  7, ...
  n =  8: 10, 16,  9, 13, 14, 17, ...
  n =  9: 13, 14, 17, 12, 11,  8, ...
  n = 10: 16,  9, 13, 14, 17, 12, ...
    ...
Column k = 1 contains the start of A375602.
Ord(T(1,1),T(2,1), ... T(7,1)) = 2, ord(T(1,1),T(2,1), ... T(21,1)) = 18, ord(T(1,1),T(2,1), ... T(55,1)) = 1980, ord(T(1,1),T(2,1), ... T(120,1)) = 51480, where ord is order of permutation.
The first 6 antidiagonals are:
  1;
  2, 1;
  4, 2, 1;
  3, 3, 2, 1;
  5, 4, 4, 2, 1;
  6, 5, 3, 3, 2, 1;
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Module[{L,Ld,Rd,P,Result},L=Ceiling[(Sqrt[4*Sqrt[8*n+1]-3]-1)/2]; Ld=Ceiling[(Sqrt[8*n+1]-1)/2]; Rd=n-(Ld-1)*Ld/2; P=L*Rd+Ld-L*(L+1)/2-Max[Rd-(L^2-L+2)/2,0]*(Max[Rd-(L^2-L+2)/2,0]+1)/2; Result=P+(L-1)*L*(L^2-L+2)/8; Result] (*A375602*) composeSequence[a_,n_,k_]:=Nest[a,n,k]
    Nmax=10; Kmax=6; T=Table[composeSequence[a,n,k],{n,1,Nmax},{k,1,Kmax}]

Formula

(T(1,k),T(2,k), ... T(A002817(n),k)) is permutation of the integers from 1 to A002817(n). (T(1,k),T(2,k), ... T(A002817(n),k)) = (T(1,1),T(2,1), ... T(A002817(n),1))^k.

A264894 a(n) = n*(7*n - 5)*(49*n^2 - 35*n - 10)/8.

Original entry on oeis.org

0, 1, 261, 1956, 7291, 19500, 42846, 82621, 145146, 237771, 368875, 547866, 785181, 1092286, 1481676, 1966875, 2562436, 3283941, 4148001, 5172256, 6375375, 7777056, 9398026, 11260041, 13385886, 15799375, 18525351, 21589686, 25019281, 28842066, 33087000
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Comments

Doubly 9-gonal (or nonagonal) numbers.

Crossrefs

Programs

  • Magma
    [n*(7*n-5)*(49*n^2-35*n-10)/8: n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
  • Mathematica
    Table[n (7 n - 5) (49 n^2 - 35 n - 10)/8, {n, 0, 30}]
    LinearRecurrence[{5,-10,10,-5,1},{0,1,261,1956,7291},40] (* Harvey P. Dale, Apr 29 2017 *)
  • PARI
    vector(100, n, n--; n*(7*n-5)*(49*n^2-35*n-10)/8) \\ Altug Alkan, Nov 27 2015
    

Formula

G.f.: x*(1 + 256*x + 661*x^2 + 111*x^3)/(1 - x)^5.
a(n) = A001106(A001106(n)).
Sum_{n>0} 1/a(n) = (4*(sqrt(65)*gamma + sqrt(65)*polygamma(0, 2/7) - 5*polygamma(0, (1/14)*(9 - sqrt(65))) + 5*polygamma(0, (1/14)*(9 + sqrt(65)))))/(25*sqrt(65)) = 1.0045877861645573..., where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.

A264895 a(n) = n*(4*n - 3)*(16*n^2 - 12*n - 3).

Original entry on oeis.org

0, 1, 370, 2835, 10660, 28645, 63126, 121975, 214600, 351945, 546490, 812251, 1164780, 1621165, 2200030, 2921535, 3807376, 4880785, 6166530, 7690915, 9481780, 11568501, 13981990, 16754695, 19920600, 23515225, 27575626, 32140395, 37249660, 42945085, 49269870
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 27 2015

Keywords

Comments

Doubly 10-gonal (or decagonal) numbers.

Crossrefs

Programs

  • Magma
    [n*(4*n - 3)*(16*n^2 - 12*n - 3): n in [0..30]]; // Vincenzo Librandi, Nov 28 2015
  • Mathematica
    Table[n (4 n - 3) (16 n^2 - 12 n - 3), {n, 0, 30}]
    LinearRecurrence[{5,-10,10,-5,1}, {0, 1, 370, 2835, 10660}, 50] (* G. C. Greubel, Sep 07 2018 *)
  • PARI
    vector(100, n, n--; n*(4*n-3)*(16*n^2-12*n-3)) \\ Altug Alkan, Nov 27 2015
    

Formula

G.f.: x*(1 + 365*x + 995*x^2 + 175*x^3)/(1 - x)^5.
a(n) = A001107(A001107(n)).
Sum_{n>0} 1/a(n) = (sqrt(21)*gamma + sqrt(21)*polygamma(0, 1/4) - 3*polygamma(0, (1/8)*(5 - sqrt(21))) + 3*polygamma(0, (1/8)*(5 + sqrt(21))))/(9*sqrt(21))= 1.00322253307732984...., where gamma is the Euler-Mascheroni constant (A001620), and polygamma is the derivative of the logarithm of the gamma function.

A375764 a(n) is the sum of distinct sums of all subsets with two or more elements of {1, 2, ..., n}.

Original entry on oeis.org

0, 0, 3, 18, 52, 117, 228, 403, 663, 1032, 1537, 2208, 3078, 4183, 5562, 7257, 9313, 11778, 14703, 18142, 22152, 26793, 32128, 38223, 45147, 52972, 61773, 71628, 82618, 94827, 108342, 123253, 139653, 157638, 177307, 198762, 222108, 247453, 274908, 304587
Offset: 0

Views

Author

Darío Clavijo, Aug 26 2024

Keywords

Comments

The cardinality of the set for n is A034856(n-1).

Examples

			For n = 3 the starting set is {1,2,3} and there are subsets {1,2}{1,3}{2,3}{1,2,3} that sum to 3,4,5 and 6 and the sum of distinct sums (3+4+5+6) is 18.
		

Crossrefs

Programs

  • Mathematica
    Join[{0, 0}, Nest[PolygonalNumber, Range[2, 50], 2] - 3] (* Paolo Xausa, Sep 13 2024 *)
  • Python
    a = lambda n: max(0,(n**4+2*n**3+3*n**2+2*n-24)//8)
    print([a(n) for n in range(1,40)])
    
  • Python
    def A375764(n): return (m:=n*(n+1)-4)*(m+10)>>3 if n>1 else 0 # Chai Wah Wu, Aug 30 2024

Formula

a(n) = A002817(n) - 3 for n > 1.
From Alois P. Heinz, Aug 27 2024: (Start)
G.f.: x^2*(2*x^4-7*x^3+8*x^2-3*x-3)/(x-1)^5.
a(n) = max(0,(n^4+2*n^3+3*n^2+2*n-24)/8). (End)
E.g.f.: exp(x)*(x^4/8 + x^3 + 2*x^2 + x - 3) + 2*x + 3. - Stefano Spezia, Aug 28 2024

Extensions

More terms from Alois P. Heinz, Aug 27 2024

A096662 Least nontrivial n-tuply triangular number.

Original entry on oeis.org

3, 6, 21, 231, 26796, 359026206, 64449908476890321, 2076895351339769460477611370186681, 2156747150208372213435450937462082366919951682912789656986079991221
Offset: 1

Views

Author

Robert G. Wilson v, Jul 02 2004

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := n(n + 1)/2; Table[ Nest[f, 2, n], {n, 10}]

Formula

a(n)=A007501(n). [From R. J. Mathar, Sep 04 2008]

A128769 Number of inequivalent n-colorings of the 6D hypercube under the full orthogonal group of the cube (of order 2^6*6! = 46080).

Original entry on oeis.org

1, 400507806843728, 74515759884862073604656433, 7384600028168436080716029918923776, 11764346491956060465118857334844472390625, 1374572193221502774409273556832082839526247376
Offset: 1

Views

Author

Ricardo Perez-Aguila (ricardo.perez.aguila(AT)gmail.com), Apr 04 2007

Keywords

Comments

I assume this refers to colorings of the vertices of the cube. - N. J. A. Sloane, Apr 06 2007

Examples

			a(2)=400507806843728 because there are 400507806843728 inequivalent 2-colorings of the 6D hypercube.
		

References

  • Banks, D. C.; Linton, S. A. & Stockmeyer, P. K. Counting Cases in Substitope Algorithms. IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 4, pp. 371-384, 2004.
  • Perez-Aguila, Ricardo. Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Polya's Countings and A Concise Representation. Proceedings of the 3rd International Conference on Electrical and Electronics Engineering and XII Conference on Electrical Engineering ICEEE and CIE 2006, pp. 63-66.
  • Polya, G. & Read R. C. Combinatorial Enumeration of Groups, Graphs and Chemical Compounds. Springer-Verlag, 1987.

Crossrefs

Programs

  • Mathematica
    A[n_] := (1/46080)*(3840n^6 + 16512*n^8 + 1920*n^12 + 3840*n^14 + 12504*n^16 + 2160*n^20 + 1440*n^22 + 2320*n^24 + 1213*n^32 + 120*n^36 + 180*n^40 + 30*n^48 + n^64)
  • PARI
    a(n) = (1/46080)*(3840*n^6 + 16512*n^8 + 1920*n^12 + 3840*n^14 + 12504*n^16 + 2160*n^20 + 1440*n^22 + 2320*n^24 + 1213*n^32 + 120*n^36 + 180*n^40 + 30*n^48 + n^64); \\ Joerg Arndt, Apr 15 2013

Formula

a(n) = (1/46080)*(3840*n^6 + 16512*n^8 + 1920*n^12 + 3840*n^14 + 12504*n^16 + 2160*n^20 + 1440*n^22 + 2320*n^24 + 1213*n^32 + 120*n^36 + 180*n^40 + 30*n^48 + n^64)

A129347 Number of inequivalent n-colorings of the 5D hypercube under the set of geometric transformations generated by all possible compositions of the 5 main reflections and the 10 main rotations and their inverses, in any order, with repetition of these geometric transformations allowed.

Original entry on oeis.org

1, 1228158, 484086357207, 4805323147589984, 6063609955178082875, 2072592733807533035358, 287612372569381586086269, 20632358601785638477436416, 894188910508179779377279557
Offset: 1

Views

Author

Ricardo Perez-Aguila (ricardo.perez.aguila(AT)gmail.com), Apr 10 2007

Keywords

Comments

The formula was obtained by computing the cycle index of the group of geometric transformations, in 5D space, generated by all possible compositions of the 5 main reflections and the 10 main rotations and their inverses, in any order, with repetition of these geometric transformations allowed. The cycle index was obtained through the well known Polya's Enumeration Theorem.

Examples

			a(2)=1228158 because there are 1228158 inequivalent 2-colorings of the 5D hypercube.
		

References

  • Banks, D.C.; Linton, S.A. & Stockmeyer, P.K. Counting Cases in Substitope Algorithms. IEEE Transactions on Visualization and Computer Graphics, Vol. 10, No. 4, pp. 371-384, 2004.
  • Perez-Aguila, Ricardo. Enumerating the Configurations in the n-Dimensional Orthogonal Polytopes Through Polya's Countings and A Concise Representation. Proceedings of the 3rd International Conference on Electrical and Electronics Engineering and XII Conference on Electrical Engineering ICEEE and CIE 2006, pp. 63-66.
  • Polya, G. & Read, R. C., Combinatorial Enumeration of Groups, Graphs and Chemical Compounds. Springer-Verlag, 1987.

Crossrefs

Programs

  • Mathematica
    A[n_] := (1/3840)*(1184*n^4 + 1624*n^8 + 240*n^10 + 400*n^12 + 311*n^16 + 60*n^20 + 20*n^24 + n^32)

Formula

a(n) = (1/3840)*(1184*n^4 + 1624*n^8 + 240*n^10 + 400*n^12 + 311*n^16 + 60*n^20 + 20*n^24 + n^32)
Previous Showing 61-69 of 69 results.