A321246 Non-isomorphic proper colorings of the 5 X 5 grid graph using at most n colors under rotational and reflectional symmetries.
0, 2, 76332, 2557101612, 6352711134515, 2747239197568620, 378972203462839707, 23698347614119889312, 832593421909253876202, 18885862442806789810230, 304064344379602597321190, 3716359333313224494744012, 36226784801918510547852117, 292338319876651811428566992, 2009992643746035728869251645, 12045344786281525649136156960, 64072515057361294676198896292
Offset: 1
Keywords
References
- F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, 1973.
Links
- Marko Riedel et al., Tree graphs colorings, Math StackExchange, December 2017.
- Marko Riedel et al., 3-colourings of a 3×3 table with one of 3 colors up to symmetries, Math StackExchange, October 2018.
Formula
a(n) = (1/8)*n^25 - 5*n^24 + (195/2)*n^23-1233*n^22 + (45399/4)*n^21 - 80919*n^20 + (928545/2)*n^19 - (17590911/8)*n^18 + (69997383/8)*n^17 - (118477969/4)*n^16 + (172111059/2)*n^15 - (1726958987/8)*n^14 + (3754019329/8)*n^13 - (1770719251/2)*n^12 + (5797425049/4)*n^11 - 2053661272*n^10 + (20055169857/8)*n^9 - (20932696169/8)*n^8 + (9236896437/4)*n^7 - (6780818949/4)*n^6 + (8083053959/8)*n^5 - (3768579695/8)*n^4 + (1292510453/8)*n^3 - (145271789/4)*n^2 + 4017958*n.
Comments