Original entry on oeis.org
1, 2, 0, 576, 0, 199065600, 0, 1262123552342016000
Offset: 1
A344662
a(n) is the number of preference profiles in the stable marriage problem with n men and n women so that they form n pairs of people of different genders who rank each other first, and so that the men's preferences arranged in a matrix form a Latin square.
Original entry on oeis.org
1, 2, 96, 746496, 1284211998720, 2427160677580800000000, 6166762687851449045483520000000000, 45287412266290145430585597857888710164480000000000, 1555956528335898586085189699733983238252540690603399394099200000000000, 395245501240598487865502317687285665641954608158944047815164739503046322343116800000000000000
Offset: 1
For n = 3, there are A002860(3) = 12 ways to set up the men's preference profiles, where A002860(n) is the number of Latin squares of order n. The men's first preferences set the women's first preferences, so we only need to complete the women's profiles with other preferences, which can be done in 2!^3 = 8 ways. Thus, A344662(3) = 12 * 8 = 96.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
- Wikipedia, Gale-Shapley algorithm.
A344664
a(n) is the number of preference profiles in the stable marriage problem with n men and n women where both the men's and the women's preferences form a Latin square when arranged in a matrix. In addition, it is possible to arrange all people into n man-woman couples such that they rank each other first.
Original entry on oeis.org
1, 2, 24, 13824, 216760320, 917676490752000, 749944260264355430400000, 293457967200879687743551498616832000, 84112872283641495670736269523436185936222748672000, 27460610008848610956892895086773773421767179663217968124264448000000
Offset: 1
For n = 3, there are A002860(3) = 12 Latin squares of order 3. Thus, there are A002860(3) = 12 ways to set up the men's preference profiles. After that, the women's preference profiles form a Latin square with a fixed first column, as the first column is uniquely defined to generate 3 pairs of soulmates. Thus, there are A002860(3)/3! = 12/6 = 2 ways to set up the women's preference profiles, making a(3) = 12 * 2 = 24 preference profiles.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
- Wikipedia, Gale-Shapley algorithm.
A344665
a(n) is the number of preference profiles in the stable marriage problem with n men and n women, where both the men's preferences and women's preferences form a Latin square when arranged in a matrix, with no paired man and woman who rank each other first.
Original entry on oeis.org
0, 2, 48, 124416, 9537454080, 243184270049280000, 1390396658530114967961600000, 4352862027490648408300099378983469056000, 11228731998377005106060609036300637077741992056717312000, 36658843398022550531624696117934603340895735930389121945136191766528000000
Offset: 1
For n = 2, there are A002860(2) = 2 ways to set up the men's profiles. Since the women don't want to rank the man who ranked them first as first, there is exactly 1 way to set up the women's profiles. So, there are 2 * 1 = 2 preference profiles for n = 2.
- Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.
- Wikipedia, Gale-Shapley algorithm.
A383570
Number of transversals in pine Latin squares of order 4n.
Original entry on oeis.org
8, 384, 76032, 62881792
Offset: 1
For order N=8 pine Latin square
0 1 2 3 4 5 6 7
1 2 3 0 7 4 5 6
2 3 0 1 6 7 4 5
3 0 1 2 5 6 7 4
4 5 6 7 0 1 2 3
5 6 7 4 3 0 1 2
6 7 4 5 2 3 0 1
7 4 5 6 1 2 3 0
has 384 transversals.
.
For order N=10 pine Latin square
0 1 2 3 4 5 6 7 8 9
1 2 3 4 0 9 5 6 7 8
2 3 4 0 1 8 9 5 6 7
3 4 0 1 2 7 8 9 5 6
4 0 1 2 3 6 7 8 9 5
5 6 7 8 9 0 1 2 3 4
6 7 8 9 5 4 0 1 2 3
7 8 9 5 6 3 4 0 1 2
8 9 5 6 7 2 3 4 0 1
9 5 6 7 8 1 2 3 4 0
has no transversals.
.
For order N=12 pine Latin square
0 1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 0 11 6 7 8 9 10
2 3 4 5 0 1 10 11 6 7 8 9
3 4 5 0 1 2 9 10 11 6 7 8
4 5 0 1 2 3 8 9 10 11 6 7
5 0 1 2 3 4 7 8 9 10 11 6
6 7 8 9 10 11 0 1 2 3 4 5
7 8 9 10 11 6 5 0 1 2 3 4
8 9 10 11 6 7 4 5 0 1 2 3
9 10 11 6 7 8 3 4 5 0 1 2
10 11 6 7 8 9 2 3 4 5 0 1
11 6 7 8 9 10 1 2 3 4 5 0
has 76032 transversals.
A035482
Number of n X n symmetric matrices each of whose rows is a permutation of 1..n.
Original entry on oeis.org
1, 1, 2, 6, 96, 720, 328320, 31449600, 440952422400, 444733651353600, 471835793808949248000, 10070314878246926155776000, 1058410183156945383046388908032000, 614972203951464612786852376432607232000
Offset: 0
a(3) = 6 because the first row is arbitrary (say, 213) and the rest is then determined. By symmetry the second row has to be 132 or 123 but in order for the third row/column to work it has to be 132.
A097635
Triangle read by rows: T(n,k) = number of unique-valued sequences of length k, n >= 1, 1 <= k <= 2n-3, in the symmetric group S_n.
Original entry on oeis.org
1, 2, 6, 18, 12, 24, 456, 5664, 20640, 576, 120, 13560, 1395840
Offset: 1
Aleksandar Blazhevski-Cane (CaneB(AT)mt.net.mk), Aug 17 2004
Triangle begins:
1
2
6 18 12
24 456 5664 20640 576
120 13560 1395840 ?
Entry revised Dec 31 2005
A108395
Number of pluperfect Latin squares of order n.
Original entry on oeis.org
1, 2, 12, 288, 161280, 1393920, 61479419904000, 592612475535360, 6670903752021072936960
Offset: 1
A114628
Number of even Latin squares of order n.
Original entry on oeis.org
1, 2, 6, 576, 80640, 505958400, 30739709952000, 55019078005712486400
Offset: 1
A211215
Total number of Latin n-dimensional hypercubes of order 4; labeled n-ary quasigroups of order 4.
Original entry on oeis.org
4, 24, 576, 55296, 36972288, 6268637952000, 80686060158523011084288, 4465185218736554544676917926460256725000192, 4558271384916189349044295395852008182480786230841798008741684281906576963885826048
Offset: 0
- T. Ito, Creation Method of Table, Creation Apparatus, Creation Program and Program Storage Medium, U.S. Patent application 20040243621, Dec 02 2004.
- Denis S. Krotov and Vladimir N. Potapov, On the reconstruction of N-quasigroups of order 4 and the upper bounds on their numbers, Proc. Conference devoted to the 90th anniversary of Alexei A. Lyapunov (Novosibirsk, Russia, October 8-11, 2001), 2001.
- Denis S. Krotov and Vladimir N. Potapov, n-Ary Quasigroups of Order 4, arXiv:math/0701519 [math.CO], 2007-2008; SIAM J. Discrete Math. 23:2 (2009), 561-570.
- B. D. McKay and I. M. Wanless, A census of small latin hypercubes, SIAM J. Discrete Math. 22, (2008) 719-736.
- Vladimir N. Potapov and Denis S. Krotov, On the number of n-ary quasigroups of finite order, arXiv:0912.5453 [math.CO], 2009-2016; Discrete Mathematics and Applications, 21:5-6 (2011), 575-586.
Comments